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Superfluid Fermi Gases with Large Scattering Length
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We report quantum Monte Carlo calculations of superfluid Fermi gases with short-range two-body
attractive interactions with infinite scattering length. The energy of such gases is estimated to be �0:44�
0:01� times that of the noninteracting gas, and their pairing gap is approximately twice the energy per
particle.

DOI: 10.1103/PhysRevLett.91.050401 PACS numbers: 03.75.Hh, 05.30.Fk, 21.65.+f
Fermi gases with attractive pair interaction become
superfluid at low temperature. The BCS expressions in

approximate solutions of the two-body Schrödinger
equation,
In dilute Fermi gases the pair interactions have a range
much smaller than the interparticle spacing. However,
when the two-particle scattering length is large, these
short-range interactions can modify the gas properties
significantly. A well-known example is low density neu-
tron matter which may occur in the inner crust of neutron
stars [1]. The two-neutron interaction has a range of
�2 fm, but the scattering length is large, �18 fm, so
that even at densities as small as 1% of the nuclear density
the parameter akF has a magnitude much larger than 1.
Bertsch [2] proposed in 1998 that the solution of the
idealized problem of a dilute Fermi gas in the limit
akF ! �1 could give useful insights into the properties
of low density neutron gas.

Cold dilute gases of 6Li atoms have been produced in
atom traps. The interaction between these atoms can be
tuned using a known Feshbach resonance, and the esti-
mated value of akF in a recent experiment [3] is �� 7:4.
As the interaction strength is increased beyond that for
a � �1, we get bosonic two-fermion bound states. In
this sense a dilute Fermi gas with large a is in between
weak coupling BCS superfluid and dilute Bose gases with
Bose-Einstein condensation [4]. Attempts to produce
Bose gases in the limit a=r0 ! 1, using Feshbach reso-
nances [5,6], are in progress, and their energy has been
recently estimated using variational methods [7]. Here r0
is the unit radius; �r30 � 3=4�.

In the a! �1 limit k2F=m is the only energy scale,
and the ground state energy per particle of the interacting
dilute Fermi gas is proportional to that of the noninter-
acting Fermi gas (FG):

E0��� � �EFG � �
3

10

k2F
m
: (1)

Baker [8] and Heiselberg [9] have attempted to obtain the
value of the constant � from expansions of the Fermi gas
energy in powers of akF. Heiselberg obtained � � 0:326,
while Baker obtained � � 0:326 and 0.568 with different
Padé asymptotes.
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terms of the scattering length were given by Leggett [10],
and they were used to study the properties of superfluid
dilute Fermi gases, as a function of akF, by Engelbrecht,
Randeria, and Sá de Melo [11]. For akF � �1 they
obtain an upper bound, � � 0:59, using the BCS wave
function. These gases are also estimated to have large
gaps comparable to the ground state energy per particle.

Here we report studies of Fermi gases with quantum
Monte Carlo methods using the model potential:

v�r� � �
2

m
2

cosh2�r�
: (2)

The zero energy solution of the two-body Schrödinger
equation with this potential is tanh�r�=r and corre-
sponds to a � �1. The effective range is 2=, and in
order to ensure that the gas is dilute we user0 > 10. All
the results presented here are for r0 � 12; however,
some of the calculations were repeated for r0 � 24
and the results extrapolated to 1=! 0.

We have carried out fixed node Green’s function Monte
Carlo [12] (FN-GFMC) calculations with trial wave func-
tions of the form

�V�R� �
Y
i;j0
f�rij0 ���R�; (3)

where i; j; . . . and i0; j0; . . . label spin-up and spin-down
particles, and the configuration vector R gives the posi-
tions of all the particles. Only the antiparallel spin pairs
are correlated in this �V with the Jastrow function f�rij0 �.
The parallel spin pairs do not feel the short-range inter-
action due to Pauli exclusion.

In FN-GFMC the �V is evolved in imaginary time
with the operator e�H� while keeping its nodes fixed
to avoid the fermion sign problem. In the limit �! 1
it yields the lowest-energy state with the nodes of
�V . These nodes, and hence the FN-GFMC energies,
do not depend upon the positive definite Jastrow function.
Nevertheless, it is useful to reduce the variance of
the FN-GFMC calculation. In the present work we use
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FIG. 1. The optimum !�r� (solid lines) and the !S (dashed
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in the 001, 011, and 111 directions of the periodic box.
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�
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m
r2 � v�r�

�
f�r < d� � �f�r < d�; (4)

with the boundary conditions f�r > d� � 1 and f0�r �
d� � 0 [7]. The value of d is obtained by minimizing the
energy calculated using variational Monte Carlo. Note
that a dilute Fermi gas is stable even when a! �1,
unlike dilute Bose gases in the a! 1 limit.

The calculations are carried out in a periodic cubic box
having �L3 � N. The single particle states in this box are
plane waves with momenta ki:

k i �
2�
L

�nixx̂x� niyŷy� nizẑz�: (5)

The free-particle energies depend only on I � n2x � n2y �
n2z . For N � 14 and 38 we have closed shells having states
with I � 1 and I � 2 occupied. The commonly used
Jastrow-Slater (JS) �V�R� is obtained by using

�S �

"
A

Y
I<Imax

eikirj

#"
A

Y
I<Imax

eikir0j

#
; (6)

in Eq. (3). The more general, Jastrow-BCS (J-BCS)
�V�R� has

�BCS � A�!�r110 �!�r220 � . . .!�rnn0 ��; (7)

with n � N=2. The antisymmetrizer A in the �BCS

separately antisymmetrizes between the spin-up and
spin-down particles. The �BCS describes the component
of the BCS state with N particles when

jBCSi �
Y
i

�ui � via
y
ki"
ay�ki#

�j0i; (8)

!�r� �
X
i

vi
ui
eikir: (9)

The nodal surfaces of �BCS depend upon the pairing
function !�r� and equal those of �S when vi � 0 for all
ki > kF.

FN-GFMC gives upper bounds to the energy, which
equal the exact value when the trial wave function has the
nodal structure of the ground state. Therefore, we can
determine the !�r� variationally by minimizing the FN-
GFMC energy. We use the parametrization

!�r� � ~##�r� �
X
i;I�IC

%I exp�iki  r�; (10)

~##�r� � #�r� � #�L� r� � 2#�L=2�; (11)

#�r� � �1� &br��1� exp��cbr��
exp��br�
cbr

: (12)

The function ~##�r� has a range of L=2, the value of &
is chosen such that it has zero slope at the origin, and
IC � 4 here.

The parameters b; c and%I�IC of!�r� are optimized by
choosing a random distribution of initial values and mea-
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suring the parameters of the lowest-energy (longest-
lasting) configurations in FN-GFMC calculation. For
38 particles it produces an optimum set of parameters
br0 � 0:8, c � 10, %I�0;4 � 0:016; 0:466; 0:0068;
0:00091; 0:0007 which give the smallest FN-GFMC en-
ergy having � � 0:440�2�. Calculations in which #�r� �
0 give optimum values %I�0;4 � 0:24; 1:0; 0:2; 0:057;
0:035 and � � 0:459�2�, while the Slater !S�r� having
#�r� � 0 and %I�0;4 � 1; 1; 1; 0; 0 gives a much larger
� � 0:54.

The optimum!�r� is compared with the!S�r� in Fig. 1;
it has a sharper peak at r � 0. This peak depends upon
the Jastrow function f�r� acting between all the N2=4
antiparallel spin pairs. For example, the !�r� obtained by
solving the BCS equation with the bare potential in uni-
form gas without the f�r� has a much sharper peak.

The optimum!�r� has%0 <%1 forN � 38; in contrast
the variationally determined BCS wave function has
%0 � %1. The momentum distribution of particles in the
trial and evolved (� � 0 and 1) wave functions are shown
in Fig. 2. For N � 38 the occupation of the I � 0 state is
smaller than the I � 1; calculations with much larger
values of N are planned to test if this is a finite box size
effect.

We have attempted further optimizations by incorpo-
rating backflow [13,14] into the BCS pair functions ~!!.
Initial calculations indicate that this will reduce the � by
� 0:02. On the other hand, estimates of the corrections
due to the finite range of the present interaction indicate
that going to the 1=! 0 limit will raise � by a similar
amount. Thus our present upper bound for the constant �
is 0.44(1).

In order to estimate the gap # of this superfluid we
studied differences between energies of systems with
odd and even number of particles. A general wave func-
tion with n pairs, u spin-up and d spin-down unpaired
particles can be written as
050401-2
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�BCS�R� � Af�!�r110 � . . .!�rnn0 ��

� � 1"�rn�1� . . . u"�rn�u��

� � 1#�r�n�1�0 � . . . d#�r�n�d�0 ��g: (13)
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FIG. 2 (color online). The momentum distribution of
particles.
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The unpaired particles are in  i" and  j# single particle
states.We can write this wave function as the determinant
of an M�M matrix, where M � n� u� d [15].
For example, when u � 2 and d � 3 the matrix is given
by
0
BBBBBBBBBBBB@

!�r110 � !�r120 �    !�r1�n�d�0 �  1"�r1�  2"�r1�
!�r210 � !�r220 �    !�r2�n�d�0 �  1"�r2�  2"�r2�

..

. ..
. ..

...
...
. ..

. ..
. ..

.

!�r�n�u�10 � !�r�n�u�20 �    !�r�n�u��n�d�0 �  1"�rn�u�  2"�rn�u�
 1#�r10 �  1#�r20 �     1#�r�n�d�0 � 0 0
 2#�r10 �  2#�r20 �     2#�r�n�d�0 � 0 0
 3#�r10 �  3#�r20 �     3#�r�n�d�0 � 0 0

1
CCCCCCCCCCCCA

(14)
The fact that the general �BCS�R� can be expressed as a
determinant makes it possible to perform numerical cal-
culations for large values of N. When N � 2n, the fully
paired ground state has u � d � 0, while those of sys-
tems with N � 2n� 1 have either u or d � 1.

The FN-GFMC ground state energies for various val-
ues of N are shown in Fig. 3. The straight dotted line in
Fig. 3 is 0:44EFG. The calculated energies have the odd-
even gap expected in superfluids and well-known in
nuclei. The values of the odd-even gap,

#�N � 2n� 1� � E�N� � 1
2�E�N � 1� � E�N � 1��;

(15)

are shown in Fig. 4. The estimated value of the gap is
�0:9EFG or �2�EFG. In fact, the odd particle removal
energies, E�N � 2n� 1� � E�N � 2n�, at fixed density,
are ��4=3�EFG. The odd particles in the interacting gas
have energies higher than that for noninteracting gas.
Apparently the odd particles do not gain any benefit
from the attractive pair potential; on the other hand,
they hinder the pairing of the others. BCS calculations
including polarization correction [16,17] give # �
0:81EFG in the large a limit.

Several consequences of the strong pairing in this
superfluid gas are seen in the calculated energies.
Noninteracting Fermi gases have shell gaps at N � 14
and 38; they are not noticeable in this gas. The ground
states of 15 and 17 particle systems have momenta with
I � 1 rather than the I � 2 in noninteracting states and
the I � 0 expected in the limit of strongly bound pairs.

Some of the differences between the nodal structures of
the JS and J-BCS wave functions can be seen by consid-
ering the case where ri � ri0 . For the JS case, the up and
down determinants will then be identical and the com-
plete wave function will be the square of one of these
determinants. We now imagine exchanging the positions
of two pairs by rotating them around their center of mass.
Since each determinant must change sign, the JS wave
function must go through zero during this exchange.
When the pairs are separated by small distances the up
and down determinants are no longer equal. Thus they
will change signs at different points along the exchange
path. We therefore expect a negative region which will
effectively block these ‘‘two-boson’’ exchanges for fixed
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FIG. 3. The E�N� in units of EFG.
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node calculations. In the J-BCS case, the exchanges can
occur without crossing a node. In the composite boson
limit where !�r� is strongly peaked around the origin,
there is no sign change under pair exchanges when all the
pairs are well separated.

In order to further understand the difference between
the JS and J-BCS wave functions we studied their nodal
structure for the following three-pair exchange. In ran-
domly chosen configurations distributed with �2

J�BCS�R�
the three closest pairs ii0, jj0, and kk0 were identified.
Their center of masses are denoted by Sl. The wave
functions �0�x� are calculated for the positions defined
as follows: All particles m;m0 � i; i0; j; j0; k; k0 retain
their positions in the random configuration. The positions
of i; j; k are given by

r i � Si � s� x�Sj � Si�; (16)

and cyclic permutations of it. Here s is the relative dis-
tance between particles in a pair. Those of i0; j0; k0 have
�s in place of s, and the typical value jsj � 0:25r0 is used
in these studies. The three pairs complete a circular ex-
change ii0 ! jj0 ! kk0, in the x � 0 to 1 interval. We
calculate the ratio �0�x�=�0�x � 0� for many configura-
tions. Note that �0�1�=�0�0� � 1. In a fixed node calcu-
lation the space where this ratio is negative is blocked for
the diffusion of the configuration. For JS and J-BCS wave
functions the ratios are negative, on average, over 29%
and 17% of the x � 0 to 1 domain. For about half of the
configurations the J-BCS had a positive ratio for all values
of x, while only 20% of the JS configurations have this
property.

We therefore picture the change in the nodal structure
in going from the JS to the J-BCS wave functions as an
opening up of the configuration space to allow pairs to
exchange without crossing a node. For systems with a
paired ground state, the J-BCS presumably allows off
diagonal long-range order via these pair exchanges. In
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most cases the energy difference between the normal state
evolved from the JS wave function and the superfluid state
evolved from J-BCS is very small �<0:1%�, and calcu-
lations of the type presented here are difficult. However,
in dilute Fermi gases with large negative a this difference
is �20% and calculations of the superfluid are possible
with bare forces.
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