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Entanglement Assisted Capacity of the Broadband Lossy Channel
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We calculate the entanglement assisted capacity of a multimode bosonic channel with loss. As long as
the efficiency of the channel is above 50%, the superdense coding effect can be used to transmit more
bits than those that can be stored in the message sent down the channel. Bounds for the other capacities
of the multimode channel are also provided.
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ties. We calculate CE for the multimode channel as the
sum of the entanglement assisted capacities of the single

cording to which the maximum of I�N i; %i� for Gaussian
channels can be evaluated on Gaussian input states [6];
Among the zoology of different capacities of quantum
channels [1,2], the entanglement assisted classical ca-
pacity CE plays an important role. This quantity has
been introduced in [3] to measure the amount of classical
information that can be sent through the channel in the
presence of an unlimited quantity of prior entanglement
between sender and receiver. CE and its quantum counter-
part QE � CE=2 (i.e., the amount of qubits that can be
sent in the presence of an unlimited quantity of prior
entanglement) give upper bounds to the classical and
quantum capacities of the channel, including the unas-
sisted capacities whose values are yet to be determined.
Moreover, it has been conjectured [4] that the entangle-
ment assisted classical capacity defines a class of equiva-
lences since all channels with the same CE seem to be able
to efficiently simulate one another. Unlike the case of
most of the other capacities, it has a closed expression
in terms of the quantum mutual information

I�N ; %� � S�%� � S�N �%�� � S��N � 1���%��; (1)

where S�%� � �Tr�%log2%� is the Von Neumann entropy,
N is the map that describes the communication channel,
and �% is a purification of the input density matrix %. The
value of CE is the maximum of I�N ; %� over all the
possible inputs % to the channel [4,5].

The entanglement assisted capacity for bosonic
Gaussian channels was analyzed in [6], where it was
shown that the maximization in the expression of CE
can be performed over Gaussian states. These channels
are important because they are the basic building blocks
of bosonic communication schemes and because they
allow one to describe infinite dimensional systems with
techniques from finite dimensional linear algebra. In this
paper we derive CE for multimode bosonic channels in
the presence of loss and average input energy constraint,
and use these results and the techniques developed to
provide upper and lower bounds for other channel capaci-
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modes maximized over nonsqueezed Gaussian states. In
fact, CE is additive and we show that squeezing the input
states does not increase the CE of a single mode. For
generic values of the channel quantum efficiency 	 we
cannot provide an analytical expression for CE, but we
give a general characterization and a numerical solution.
For 	 � 1=2, the value of CE can be analytically solved
and, interestingly, shown to coincide with the wideband
lossless channel capacity [7].

Broadband lossy channel.—In the Heisenberg picture
the ith mode of the lossy channel with quantum efficiency
	i evolves as

a0i �
�����
	i

p
ai �

��������������
1� 	i

p
bi; (2)

where ai, a0i, and bi are the annihilation operators of the
input, output, and noise modes, respectively. The loss map
N i for the ith mode arises by tracing away the noise
mode bi (in the vacuum state) and the global loss map N
is the tensor product

N
iN i. The channel described by

N maps Gaussian input states into Gaussian output states
and is hence a Gaussian channel.

The calculation of CE for the multimode lossy channel
stems from the following three facts: (i) the additivity
property of the entanglement assisted capacity, from
which the CE of the channel is calculated as the sum of
the CE of each mode [1,8], i.e.,

CE � max
%j2H j

(X
i

I�N i; %i�

)
; (3)

where H j is the Hilbert space of the jth mode of the
channel, and the max is taken over the states %i that
satisfy the average energy constraintX

i

�h!iNi � E; (4)

with !i the frequency of the ith mode and Ni its average
number of photons; (ii) the Holevo-Werner theorem ac-
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(iii) the fact that squeezing the input does not increase
CE, so that it can be estimated on nonsqueezed inputs: as
shown in the appendix, the maximum value of I�N i; %i�
(fixing the energy in the ith mode) is obtained when %i
does not contain any squeezing and is given by

cE�Ni; 	i� � g�Ni� � g�	iNi� � g��1� 	i�Ni�; (5)

where the function g is defined as

g�x� � �x� 1�log2�x� 1� � xlog2�x�; (6)

for x � 0 and g�0� � 0. The total entanglement assisted
capacity is then

CE � max
Nj

X
i

cE�Ni; 	i�; (7)

where the maximum is taken over the sets fNjg satisfying
the energy constraint (4).

The maximization (7) can be performed using the
Lagrange multiplier procedure, which, for	 � 0; 1, gives
the following equation [9]:�
1�

1

Nj

��
1�

1

	jNj

�
	j
� e!j=�

�
1�

1

�1� 	j�Nj

�
1�	j

;

(8)

where 1=��ln2� is the Lagrange multiplier that must be
chosen to satisfy the constraint (4). In general, this equa-
tion is difficult to solve analytically, but we can still give
some characterization of the solution, at least when all the
quantum efficiencies coincide (i.e., 	j � 	 for all j). In
this case the solution of Eq. (8) is a function of !j=� and
	, i.e., Nj � F �!j=�; 	�. To derive � we use Eq. (4) that
becomes

E

�h
�

X
i

!iF �!i=�; 	� ’
Z 1

0

d!
�!

!F �!=�; 	�; (9)

where we have replaced the sum over the mode index i
with an integral over the mode frequencies, assuming
that the minimum frequency interval �! of the channel
is small.With a variable change in the integral (9), we find
that � �

�����������������������������
2�P=�f�	� �h�

p
where P � E�!=�2�� is the

wideband channel input power during the transmission
time T � 2�=�! and

f�	� �
Z 1

0
dxxF �x; 	�: (10)

The value of CE is then obtained placing the solution of
Eq. (8) to evaluate the sum (7), i.e.,

CE ’
Z 1

0

d!
�!

cE�F �!=�; 	�; 	�: (11)

Performing again a change of integration variables, we
finally find

CE � T
1

ln2

��������
�P
3 �h

s
C�	�; (12)
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where

C �	� �
ln2

�

�������������
3

2f�	�

s Z 1

0
dxcE�F �x; 	�; 	�: (13)

Notice that, even without knowing the explicit form of
the function C�	�, Eq. (12) gives the exact dependence
on the input power of the entanglement assisted capacity
for the channel [10]. In particular, the entanglement as-
sisted capacity per unit time of channel use RE � CE=T
is proportional to the rate RC � 1

ln2

����������������
�P=3 �h

p
of the wide-

band noiseless bosonic channel without prior entangle-
ment [7], i.e., RE � RCC�	�.

General properties of CE.—The form of C�	� is not
easily determined analytically, but we can still calculate
it for some values of 	. First of all, for 	 � 0 all the
cE�Ni; 	� are null and C�0� � 0: no photons arrive, and
no bits are transferred. Interestingly, for 	 � 1=2 Eq. (8)
can be solved analytically and has solution

Nj �
1

e!j=� � 1
: (14)

In this case, f�1=2� � �2=6 and C�1=2� � 1, and hence
the entanglement assisted capacity for the 	 � 1=2 wide-
band channel equals the unassisted capacity of the noise-
less wideband channel T RC [7]: prior entanglement is
sufficient to restore perfect transmission for a 50% lossy
channel (this result holds also for the single mode chan-
nel—see appendix). The solution can be linearized
around 	 � 1=2 and the first order Taylor expansion of
C�	� can be obtained as

C �	� � 3
2�	� 1

2� � 1�O��	� 1=2�2�: (15)

The case 	 � 1 can be completely solved too, given that
the Lagrange equation has the same solution (14) of the
case 	 � 1=2. Here, since cE�Ni; 1� � 2cE�Ni; 1=2�, we
find C�1� � 2C�1=2� � 2: the entanglement assisted ca-
pacity for the noiseless channel is twice the unassisted
capacity as predicted by the superdense coding effect
[11]. In Fig. 1(a) C�	� is numerically evaluated and plot-
ted along with the linearization (15). The fact that
C�	� > 1 for 	 > 1=2 shows that, even in the presence
of noise, prior entanglement allows one to transmit more
bits than those actually sent in the channel (i.e., T RC)
thanks again to the superdense coding effect. A similar
effect has been shown also for the erasure channel [3,12].

An interesting class of lower bounds that provides a
good analytical approximation for CE can be obtained by
considering the set (parametrized by � > 0)

Nj �
�2

e�!j=�0 � 1
; (16)

where�0 � 6 ln2RC=�. Using Eq. (16), we find the bound

C �	� � f���2� ���	�2� ����1� 	��2�g=����1��;

(17)
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a) b)

FIG. 1 (color online). (a) Plot, as function of the quantum
efficiency 	, of the numerical solution for C�	� of Eq. (13)
(continuous line), of the linearization (15) (gray line), and of
the lower bounds (17) with � � 1 (dotted line) and � � 1=

����
	

p

(dashed line). The insets show the same graph in the regions of
small and large 	. The points above C�	� � 1 (i.e., for 	 >
1=2) show where the superdense coding effect allows a lossy
channel to beat the capacity of the noiseless channel without
prior entanglement. (b) Classical and quantum capacities of the
lossy wideband channel. The classical capacity C=�T RC� is
confined in the dark gray area between the upper bound given
by CE and the lower bound

����
	

p
. The quantum capacity

Q=�T RC� is confined in the light gray area between the upper
bound given by the entanglement assisted quantum capacity
QE � CE=2 and the lower bound Qs obtained by calculating
the coherent information according to Eq. (19). Q is null for
	 � 1=2.
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where ��y� �
R
1
0 dxg�

y
ex�1�. In particular, the case � � 1

[see Fig. 1(a)] corresponds to employing the exact solution
for 	 � 1=2; 1 of Eq. (14) for any value of 	.

Capacity bounds.—The classical capacity C and the
quantum capacity Q measure, respectively, the number
of bits and qubits that can be sent reliably through the
channel per channel use (without the aid of prior entan-
glement). Unlike the case of CE, for 	 � 1 a closed
expression for C is not known nor is it known whether
this quantity is additive [1]: it may be that entangling
successive uses of the channel one can increase the
amount of information transmitted. Limiting the analysis
to unentangled coding procedures, a lower bound for C
can be obtained as [13]

C � max
pj���; j���

X
i

X�pi���;  i����; (18)

where %i �
R
d�pi��� i��� describes a message in

which the ‘‘�th letter’’  i��� in the ith mode has
probability density pi��� and where X is the Holevo
information S�N i�%i�� �

R
d�pi���S�N i� i�����. To

estimate the lower bound in Eq. (18), we follow the
suggestion of [6] and we evaluate X�pi���;  i���� for
047901-3
the ith mode using coherent states  i��� � j�iih�j
weighted with Gaussian probability distribution pi��� �
exp��j�j2=Ni�=��Ni�, Ni being the average number of
photons of the mode. In this case, Eq. (18) becomes C �
maxNj

P
i g�	iNi�, where again the maximum must be

taken under the average energy constraint (4). The corre-
sponding Lagrange equation has solution given by
Eq. (16) with � � 1=

����
	

p
, so that C � T

����
	

p
RC [14] [see

Fig. 1(b)]. Notice that for 	 � 1 the equality holds, since
the noiseless channel is known to be additive and we
reobtain the results of [7]. A closed expression for Q is
also not known. However, for 	 � 1=2 the no-cloning
theorem can be used to show that Q � 0, as in the case of
the erasure channel [12,14]. For 	 > 1=2, a lower bound
can be obtained evaluating the coherent information
J�N ; %� � S�N �%�� � S��N � 1���%�� on unentangled
nonsqueezed Gaussian inputs [14,15]. In fact, random
quantum codes can send quantum information down a
noisy channel at a rate given by the coherent information
[16]. In Fig. 1(b) this bound is plotted by solving numeri-
cally the corresponding Lagrange equation, which maxi-
mizes the expression

Q � max
Nj

X
i

g�	Ni� � g��1� 	�Ni�: (19)

Conclusions.—Up to now only a few realistic channels
have been analyzed at the quantum level. In this Letter we
studied the wideband bosonic channel with loss, calculat-
ing the entanglement assisted capacities CE and QE, and
we gave upper and lower bounds on the classical and
quantum capacities of this channel. The capacity CE
was shown to scale with the square root of the input
power as shown previously for the classical capacities in
the noiseless case. Moreover, we saw that the superdense
coding effect allows the sender to increase the informa-
tion transferred above the entropy of the input state if the
quantum efficiency is 	 > 1=2.

This work was funded by the ARDA, NRO, NSF, and
by ARO under a MURI program.

Appendix.—In [6] it has been shown that, for a given
value of the correlation matrix ", the quantum mutual
information I�N ; %� for a single mode a achieves its
maximum value on the Gaussian state

% �
�h
2�

Z
dz exp��i��q;�p� � zT � z � " � zT=2�; (20)

where z is a real bidimensional line vector and q and p
the two orthogonal quadratures q �

��������
�h=2

p
�a� ay�, p �

�i
��������
�h=2

p
�a� ay�. In order to evaluate the effect of the

squeezing on the quantum mutual information of the
single mode channel, it is convenient to introduce
the following parametrization for the correlation matrix
":

" �
�h
2


n0e

r c
c n0e

�r

�
; (21)
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FIG. 2 (color online). Plots of the quantum mutual informa-
tion I�N ; %� of Eq. (22): (a) I�N ; %� decreases with r (here
c � 0; m � 0); (b) I�N ; %� decreases with c (here r � 0; m �
0); (c) I�N ; %� increases with n0, i.e., decreases with m (here
r � 0; c � 0). In all plots N � 10.
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where r is the squeezing parameter. These parameters are
related through the average number of photons N by the
conditions

��������������
c2 � 1

p
� n0 � ��2N � 1� �m�= coshr: the

first relation derives from the strong version of the un-
certainty relation, while the second from the average
energy constraint (with m � hq= �hi2 � hp= �hi2). With
these definitions the quantum mutual information be-
comes

I�N ; %� � g�*�1��� g�*�	��� g�*�1� 	��; (22)

*�	� �

�����������������������������������������������������������������������
	+� �

1� 	
2

�
	+� �

1� 	
2

�s
�

1

2
; (23)

where +� � 1
2 �n0 cosh�r� �

������������������������������������
�n0 sinh�r��2 � c2

p
� are the

two eigenvalues of "= �h. Notice that for 	 � 1, when all
the photons reach the receiver, I�N ; %� is twice the en-
tropy of the initial state, as predicted by the superdense
coding effect [11]. In general, one can verify that I�N ; %�
is smaller than the initial entropy for 	< 1=2 and greater
for 	 > 1=2: the effect of superdense coding is, hence,
evident only in this last case. Since the eigenvalues +� are
related with the average number of photons N as

+� � +� � 2N � 1�m; (24)

one can show that the maximum of I�N ; %� for fixedN is
obtained for +� � +�. This is equivalent to requiring
r � 0 [i.e., no energy should be ‘‘wasted’’ in squeezing
047901-4
the input —see Fig. 2(a)] and c � 0 [see Fig. 2(b)]. This
last condition attests that the best one can do to convey
information is to send maximally mixed states, since the
parameter jcj measures the purity of the initial state.
Choosing the maximum value of c corresponds to send-
ing a single pure state and conveys no information.
Finally, since I�N ; %� is an increasing function of n0, it
can be further maximized by choosing n0 � 2N � 1 [i.e.,
its maximum allowed value achieved when hqi �
hpi � 0—see Fig. 2(c)]. With this choice, Eq. (23) be-
comes *opt�	� � 	N, which maximizes the quantum
mutual information as

cE�N ; %� � max
% j hayai�N

I�N ; %�

� g�N� � g�	N� � g��1� 	�N�; (25)

as reported in Eq. (5).
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