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We show that correlations established before quenching to very low temperatures later drive the
magnetization process of systems of single molecule magnets, after a magnetic field is applied at t � 0.
We also show that in simple cubic lattices m /

��
t

p
, as observed in Fe8, but only for 1� 2log10�hd=hw�

time decades, where hd is a nearest neighbor dipolar magnetic field and a spin reversal can occur only if
the field on it is within ( � hw; hw). However, the

��
t

p
behavior is not universal. For bcc and fcc lattices,

m / tp, but p ’ 0:7. The value to which m finally levels off is also given.
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to an initially unpolarized system. Conveniently, this
latter effect seemed to be independent of system shape.

system is held constant in time as well as from arguments
given below. For magnetic systems that readily exchange
Magnetic clusters, such as Fe8 and Mn12, that make up
the core of large organometallic molecules behave at low
temperatures as large single spins. Accordingly, these
molecules have come to be known as single molecule
magnets (SMM’s) [1]. In crystals, magnetic anisotropy
energies U inhibit magnetic relaxation of SMM’s, which
can consequently take place at very small temperatures
only through magnetic quantum tunneling (MQT).
Dipolar interactions play then an essential role. They
can give rise, upon tunneling, to Zeeman energy changes
of nearly 1 K. This exceeds by many orders of magnitude
the ground state tunnel splitting energy 
 that would
follow from perturbations by higher anisotropies for Fe8
and Mn12 [2]. Energy conservation would make MQT,
which has been observed experimentally [3], impossible
for the vast majority of spins in the system. Hyperfine
interactions between the tunneling electronic spins of
interest and nuclear spins open up a fairly large tunneling
window of energy "w such that tunneling can occur if the
Zeeman energy change 2"h upon tunneling is not much
larger than "w [4]. More precisely, the tunneling rate �0

for spins at very low temperature is given by

�0�"h� ’ ���"h="w�; (1)

where � is some rate (whose value is not important for our
purposes), ��x� 
 1 for j x j <1, ��x� 
 0 for x > 1, and
"w � 
. Other theories for MQT of SMM at very low
temperatures have also been proposed [5].We adopt Eq. (1)
here, regardless of theory or physical mechanism behind
it.We let ��x� � 1 for j x j <1 and ��x� � 0 for x 
 1 and
refer to "w as the tunnel energy window.

The interesting early time relaxation 1�m /
��
t

p
of an

initially magnetized system has been predicted [4], ob-
served experimentally [6], further explained [7], and
widely discussed [8]. An unpredicted related phenomenon
was later observed by Wernsdorfer et al. [9]: the magne-
tization m of a system of Fe8 SMM’s increases as

��
t

p
,

where t is the time after a weak magnetic field is applied
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Interesting questions arise: Is this a universal effect to be
found in all MQT experiments? If not, on what does it
depend? How many time decades does the

��
t

p
regime

cover? What is the final steady-state magnetization? No
explanation or simulation that we know of has been
offered. We address these questions here.

We report Monte Carlo (MC) results that reproduce the
m /

��
t

p
behavior of initially unpolarized systems. We

show that this arises from correlations that develop be-
tween spins and local magnetic dipolar fields, while cool-
ing to low temperatures, before finally quenching to
experiment. Furthermore m�t� depends on the cooling
protocol only through the final energy �"a reached just
before quenching.

The main results obtained follow. All energies and
magnetic fields are given in terms of "d and hd, respec-
tively, where �2"d is the energy of two S spins that lie on
sites a distance away, that point along the line joining
their two sites, a is the side of a cubic unit cell, hd �
"d=�g�BS�, g is the gyromagnetic ratio, and �B is the
Bohr magneton. We also let � stand for the rms value of h
for a disordered spin configuration [10]. After quenching
and applying a field H & 1 at t � 0,

m�t� ’ b"a"wH��3F��t; �="w; �=h0�; (2)

where b ’ 4
���������
2=�

p
, and

F ’ �t for �t & 1; (3)

F ’ 0:7��t�p for 1 & �t & ��=�w�
1=p; (4)

F ’ 0:5�"�1
w for ��="w�1=p & �t; (5)

where h0 � 2�2��2=35=2�v, �v is the number of spin sites
per unit volume, p ’ 0:5, for simple cubic (SC) lattices,
and p ’ 0:7 for body centered cubic (bcc) and face cen-
tered cubic (fcc) lattices. These results are inferred from
MC simulations in which the energy of the magnetic
2003 The American Physical Society 047202-1
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FIG. 1 (color online). (a) m="w versus �t for an applied
external field H � 1 for the shown values of "w. First, thermal-
ization took place from an initially disordered configuration up
to the time when "a reached the value 0.58. The dashed,
continuous, and dot-dashed lines are for curves calculated
from Eq. (11), for "w � 0:05, 0.2, and 1, respectively. (b)
The same as in (a) but for the shown values of "a and "w �
0:1. The continuous line is for the solution from Eq. (11). (c)
The same as in (a) and (b), but for different lattices, with "w �
0:05. For SC, bcc, and fcc lattices, previous partial thermal-
ization took place at Ta � 10, 20, and 60, till "a � 0:31, 0.28,
and 0.53, respectively. The continuous, long dashed, and short
dashed lines are for curves calculated from Eq. (11) for fcc,
bcc, and SC lattices, respectively. There are no adjustable
parameters.
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energy with the lattice, for which the energy is not a
constant of time, results are briefly discussed in the
closing remarks.

We first describe the simulations. We use the MC
method to simulate magnetic relaxation of Ising systems
of �S spins on simple cubic lattices with periodic bound-
ary conditions, which interact through magnetic dipolar
fields and flip under rules to be specified below [11]. The
system is first allowed to evolve towards thermal equilib-
rium at some ‘‘high’’ temperature Ta. We assume kBTa *

U=10, which implies that spin reversals then take place
mostly through classical thermal processes. Accordingly,
spin flips are then governed by detailed balance rules, and
Eq. (1) is not enforced. For reasons that are given below,
we also impose the restriction Ta * T0, where T0 is the
long-range ordering temperature. One may think of this
first process as a waiting stage that the systems may have
to undergo in the cooling process before quenching to a
lower temperature where a tunneling experiment (as in
Ref. [9]) can be later performed. Let this first stage end at
t � 0 with sudden cooling of the system to a ‘‘very low’’
temperature, that is, to a temperature below roughly
0:2U=�SkB� [3,12]. Accordingly, Eq. (1) is then enforced
on all spin flips for t > 0. As for a detailed balance, we
then proceed as follows.We assume that thermalization of
a SMM system with the lattice does not take place (i.e.,
the energy is constant) at very low temperatures (but see
Ref. [13]). We meet this condition by enforcing a detailed
balance but using an appropriately chosen pseudotem-
perature Tu. [From an expression below Eq. (6), kBTu �
�2=2"a. Note that Tu 
 Ta, since �"a cannot be smaller
than the equilibrium energy at Ta.] We have checked that
the mean energy is indeed constant under this rule. We do
not report here results we have obtained applying detailed
balance rules with T < Ta (applicable to systems where
thermal relaxation to the lattice takes place [13]), but we
do make a comment on them in the closing remarks. MC
results for the time evolution of m="w in SC lattice
systems, after a field H � 1 is applied upon quenching,
are shown in Fig. 1(a) for various values of "w. Before
quenching, the system was thermalized at Ta � 10=kB for
some time till the energy per spin reached the value
�0:58. Clearly, m scales with "w up to a crossover time
of roughly 10��1="2w, where m levels off. Within the time
range 1 & �t & 10="2w, m /

��
t

p
. Monte Carlo results that

show how m scales with "a are exhibited in Fig. 1(b) for
"w � 0:1. Note also that me, the leveling off value of m,
scales with "a, and, as argued below, it scales with ��2 as
well, in agreement with Fig. 1(c). Results for different
cubic lattices are shown in Fig. 1(c). The logm versus logt
slopes in the intermediate time regime are clearly lattice
structure dependent. Much of Eqs. (2)–(5) is inferred
from these graphs.

For most of the rest of the Letter, we try to understand
these results. Let us first examine the physics of the
waiting stage. We assume the system is first cooled to
some temperature Ta that is above the ordering tempera-
047202-2
ture T0, but not infinite. We also assume that kBTa *

U=10. It then follows from Arrhenius’s law, ! �
!0 exp�U=kBT�, that over barrier spin flipping readily
takes place in the laboratory within a second’s time if
!0 & 10�5 s. Some correlation between spin si and field
hi at each site i can therefore be established, but no long-
range order can develop if Ta * T0. Assume that either
Ta � T0 or that the time spent in the waiting stage is so
short that the probability density function (PDF) p�h�
that a randomly chosen site have field h is reasonably
approximated by p�h� / exp��h2=2�2�. On the other
hand, the conditional PDF to find �S given a field h
acting on the spin fulfills, in equilibrium, p��S j h� /
exp��h=kBT�. Now, since the joint probability density
p��S; h� that, on a randomly chosen site, one find h
acting on �S is in general given by p��S; h� �
p��S j h�p�h�,
047202-2
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FIG. 2 (color online). �p"�h� � p#�h��=�h"a� for a system of
16� 16� 16 spins at Ta � 10 (recall T0 ’ 2:5) before quench-
ing. The shown temperatures are given in units of "d=kB. The
system was cooled to these high temperatures from an infinite
temperature and allowed to thermalize for a time, till the
shown energies were reached. All points stand for averages
over 1:5� 105 runs. (b) �p#�h� � p"�h��=�h"a� and p�h� �
p#�h� � p"�h� at times t � 0, �t � 0:62 (discontinuous line),
and �t � 2:19 (continuous line), for the same system as in (a),
after the system was first thermalized at T � 10 till "a ’ 0:25,
was then further cooled to T � 1, and H � 2 was then applied.
A tunnel window "w � 0:1 was enforced. All points in (b)
stand for averages over 4� 104 histories. (c) The same as in (b)
but for �t � 0:5, 1, and 4; in addition, while t < 0, the system
had been partially thermalized at T � 10 till "a � 0:247.
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p��S; h� / e��h��2=kBT�2=2�2
(6)

follows in equilibrium. Therefore, the mean energy is
��2=2kBT. The replacement �2=2kBT ! "a, generalizes
the above equation to

p��S; h� / e��h�2"a�2=2�2
(7)

for all times up to equilibration. Then, to first order in
"a=�,

p"�h� � p#�h� ’
���������
2=�

p
h"a��3e�h2=2�2

; (8)

where p"�h� � p�S; h� and p#�h� � p��S; h�. All points
for �p"�h� � p#�h��=�h"a� obtained from MC calculations
collapse onto a single curve in Fig. 2(a), in agreement
with Eq. (8). Deviations of higher order in "a=� from
Eq. (8) do occur. They are within 10% even if complete
thermal equilibration is allowed to take place as long as
T * 10, i.e., above approximately 4T0.

We now examine the time evolution of the system after
abruptly cooling it, at time t � 0, to a temperature below
roughly 0:2U=�SkB�. Then, spin flips up to j Sz j <S
states can be neglected, and tunneling through the ground
state doublet is the only available path for spin reversals.
Accordingly, spin flips are allowed only if the spin’s
Zeeman energy is within the tunnel window. A field H
is applied for all t > 0. Now, if either the system is in
thermal contact with a reservoir at a temperature such
that kBT � "w or the energy is constant and sufficiently
high such that kBTu � "w, then

_mm � 2�
Z

dh��H � h�f�h; t�; (9)

where f�h; t� � p#�h; t� � p"�h; t�.
It is worth pointing out that �f�h; 0� is given by Eq. (8),

and therefore f�h; 0� � ��2h"a=�
2�p�h; 0� at t � 0,

where p�h; 0� is the PDF regardless of spin orientation,
i.e., p�h� � p#�h� � p"�h�. However, f�h; t� / hp�h; t�
does not hold for t > 0. This point is illustrated in
Fig. 2(b), where MC results for both f�h; t� and p�h; t�
are shown for some nonzero times. p�h; t� is invariant for
times 
�. As reported in Ref. [14], a sharp dip of ap-
proximately "w half-width does develop in p�h�, but only
at much later times, and then not when kBT � "w. On the
other hand, a hole does show up in f�h; t� in Fig. 2(b), as
in Wernsdorder’s experiments [9], performed at T �
40 mK(which is roughly 10 times as large as "w=kB)
[9,14].

The time development of the hole in f�h; t� is illus-
trated in Fig. 2(c). Note that the hole deepens, but its
width remains approximately constant while �t � 1, and
then, under the conditions stated above Eq. (9), _ff �
�2�f. Therefore, since m equals the area covered by
the hole fi.e., m�t� �

R
dh �f�h; 0� � f�h; t��g,

m ’ 2"wf��H; 0��1� e�2�t� (10)

if �t � 1 and "w � �. Using Eq. (8), Eq. (3) follows.
047202-3
The value me that m�t� levels off to after a sufficiently
long time, that is, Eq. (5), can be estimated as follows. For
�t * 1, f��H; t� � f��H; 0�, and the hole becomes only
broader, but it cannot become wider than the field distri-
bution p�h�. The final area covered by the hole is therefore

2f��H; 0��, which is the estimated value of me, in
rough agreement with the expression for me below Eq. (5).

More detailed considerations underlie Eq. (4). We have
derived [15] the equation

_xx ’ c1

����
2

�

r
� c2

Z t

0
d!

2"w _xx�!�
!�t� !� � 2"w

; (11)

where c1 and c2 are constants to be specified below, !�t�
!� is the inverse of the PDF that the field h on a randomly
047202-3
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chosen site be the same at times t and !. Quantity m
follows from Eq. (11) letting m � x"a"wH=�3, c1 � 4,
and c2 � 2. !�t� !� depends on t� ! through the proba-
bility (�t� !� that a spin point in opposite directions at
times t and !. To make progress, we make the approxi-
mation ! ’ min�2�h0(; 2�

����
�

p ����
(

p
�. The approximation

for ( � 1 follows from the Lorentzian PDF, of half-
width h0(, that ensues when a small fraction ( of sites
are randomly occupied by spins [16]. (The two factors of 2
come from the fact that flipping an already present spin S
is like placing a 2S spin on an unoccupied site.) The
approximation for (
 1=2 follows from the Gaussian
distribution that holds then. In between, the interpolation
checks with our MC results within some 10%. Finally,
(�t� !� must be evaluated. For this purpose, an equation
for the fraction of spins n�t� that have flipped at least once
before time t is derived [15]. It is Eq. (11) using n �
x"w=�, c1 � 1, and c2 � 1. We then use ( � n=2. The
functional dependence of F shown in Eq. (2) follows by
careful inspection of these equations. Numerical calcu-
lations yield the curves shown in Figs. 1(a)–1(c). The
exponent p depends on lattice structure through �=h0
in the expression for !�(� above. The agreement with our
MC results exhibited in Fig. 1(c) is reassuring.

A couple of final remarks follow. Equations (2)–(5) are
for magnetic systems that do not exchange energy with a
heat bath (i.e., the lattice, usually) at very low tempera-
tures. Then, m�t� ! me as t ! 1. When heat exchange
does takes place readily, as in some systems in Ref. [13],
then our simulations show that m�t� eventually crosses
over from the value given by Eqs. (2)–(5) to mth�t� ’
0:3�"w=��

3H�t, for H & 1. This happens when mth�t�
becomes the larger of the two. Later on, mth levels off
to a quasi-steady-state value (not the final thermal equi-
librium value), which depends on both system shape and
lattice structure, as expected. (If a field is not applied
inmediately upon quenching, but later, the quasi-steady-
state value of mth is also affected.) The �"w=��3 depen-
dence suggests that (see Ref. [11]), in contrast with
constant energy magnetization processes, magnetic order-
ing takes place while the system magnetizes.

Summing up, we have given MC and theoretically
based evidence to show that the m /

��
t

p
behavior ob-

served in experiments on Fe8 clusters [9] after quenching
and applying a small field H at t � 0 is driven by corre-
lations which are previously established in the system
while cooling to very low temperature. We have estab-
lished that the

��
t

p
behavior is not universal. More gener-

ally, m�t� / tp, and p depends on lattice structure. The
time range over which this behavior prevails, the value me
that the magnetization later levels off to, and the cross-
over time to a final thermally driven regime have been
determined. More specifically, Eqs. (2)–(5) have been
inferred from MC simulations and Eq. (11), and much
of the relevant physics has been explained.
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