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Zeeman Splitting of Zero-Bias Anomaly in Luttinger Liquids
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Tunneling density of states (DOS) in Luttinger liquid has a dip at zero energy, commonly known as
the zero-bias anomaly. In the presence of a magnetic field, in addition to the zero-bias anomaly, the DOS
develops two peaks separated from the origin by the Zeeman energy. We show that these finite-bias
anomalies are characterized by a power-law behavior of the DOS and the differential conductance, and
find the corresponding exponents at arbitrary strength of the electron-electron interaction. The
developed theory is applicable to various kinds of quantum wires, including carbon nanotubes.
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Interaction between electrons in a conductor leads to
the formation of an anomaly in the tunneling density of
states (DOS) at the Fermi level. The one-particle DOS is
directly related to the differential conductance of a tunnel
junction, and the anomaly in DOS translates to the zero-
bias anomaly (ZBA) of the tunneling conductance. This
anomaly gets stronger if the conductor is disordered, and
if the dimensionality of the electron system is reduced.
The perturbative treatment of the DOS anomaly in dis-
ordered conductors is well developed [1]. In a disordered
wire or film, the perturbation theory in the interaction
strength is divergent at the Fermi level, and therefore a
nonperturbative treatment is needed to describe the DOS
at low energies [2–4]. In one-dimensional conductors
with one or a few propagating electron modes, the sup-
pression of the DOS due to the electron-electron repulsion
is strong even in the absence of disorder. The density of
states in this case is adequately described within the
Luttinger liquid theory [5]. The ZBA was observed in
experiments with higher-dimensional disordered systems
[7,8]. The recently measured [9,10] strong suppression of
the tunneling in a single-wall carbon nanotube at low bias
showed that electrons in a nanotube indeed form a
Luttinger liquid.

The zero-bias anomaly thus provides important infor-
mation about strongly correlated electron systems.
However, the ZBA is sensitive mostly to the dynamics
of electron charge but not to that of spin. To probe the spin
physics, one may study the effect of a magnetic field on
the properties of the electron system. The perturbative
calculation shows [1] that the application of a magnetic
field modifies the anomaly in the DOS. It acquires, in
addition to the zero-bias dip, two peaks at energies " �
�g�BB, where g�BB is the Zeeman energy. The peaks
heights are equal and proportional to the electron-
electron interaction constant in the triplet channel [1],
which is not accessible in a measurement of the conven-
tional ZBA. The described Zeeman splitting of the ZBA
in disordered normal conductors was not observed yet. A
possible obstacle for the observation is that the quasipar-
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ticle lifetime at energy "� g�BB is short enough to
smear the singularity [11].

The perturbative theory of Zeeman splitting of ZBA
in a clean 1D system was developed in [12]. There, the
anomalies in the conductance were ascribed to the phys-
ics of Bragg reflection of electrons off the Friedel
oscillation. Magnetic field B splits the standard Friedel
oscillation in two. The difference between the two corre-
sponding wave vectors is proportional to B. Electron
scattering off the two components of the Friedel oscil-
lation results in the conventional DOS anomaly at zero
energy and two additional peaks in the DOS at �g�BB.
This single-electron picture is valid for a weak electron-
electron interaction only, and is not applicable to the
Luttinger liquid with a strong repulsion between elec-
trons. However, the strongest manifestation of the
Luttinger liquid behavior is found in carbon nanotubes,
where the interaction is not weak. Keeping in mind that
the very notion of an electronlike quasiparticle is not
adequate in a Luttinger liquid, one may question the
existence of peaks in the DOS at finite energy j"j �
g�BB in such systems.

In this paper, we demonstrate that the tunneling density
of states in a Luttinger liquid is singular at energies " �
�g��BB, independent of the interaction strength in the
charge channel. It allows us to expect an observation of
such singularities in carbon nanotubes. The effective
Landé factor g� here is renormalized by the interaction.
The overall magnitude of the singular correction to DOS
is proportional to the constant of electron-electron inter-
action in the triplet channel. The energy dependence of
the DOS around the singularities is given by a power law,
���"� � j"� g��BBj

�. We calculate the exponent � in
terms of the Luttinger liquid parameters.

Consider the one-dimensional Luttinger liquid filling
the half line x > 0 and confined by a barrier at x � 0. We
decompose the electron creation operator  y

s �x� into the
left- and right-moving parts:  y

s �  y
	;s 	  y


;s. Here �
denote left and right movers, and s � �1 denote two spin
states. Then, we bosonize electrons [6]:
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�
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p f��’��x� 	 s’��x�� 	 #��x� 	 s#��x�g
�
: (1)
Bosonic variables ’i and #i describe charge (i � �) and
spin (i � �) fluctuations, and a is the short-distance cut-
off. The fields ’i and #j are canonically conjugate:
�’i�x�; #j�x0�� � 
i��ij��x
 x0�. Since the electron
wave function is zero at the barrier (x � 0), the fields
’i satisfy the boundary condition:

’��0� � ’��0� � 0: (2)

The Hamiltonian can be divided into four parts:

H � H� 	H� 	H0 	HB; (3)

where the first two terms include the density-density
interactions:

Hi �
ui
2�

Z
dx

�
Ki�@x#i�2 	

1

Ki
�@x’i�2

�
; (4)

and H0 represents spin-flip backscattering:

H0 �
2g?

�2�a�2

Z
dx cos

���
8

p
’�:

The last term of Eq. (3) describes Zeeman splitting:

HB � 

g�BB
2

Z
dx�spin�x� �

g�BB

2�
���
2

p
Z
dx@x’�;

where �spin�x� is spin density. The parameters ui, Ki,
and g? can be expressed in terms of interaction poten-
tial V�x�, but here we treat them as phenomenological
constants. For free electrons, K� � K� � 1, while for
repulsive interaction K� < 1 and K� > 1. Also, the bare
parameters K� and g? are not independent. For g? � 1,
they are related as K� � 1	 g?=2�u�.

For convenience, we absorb the magnetic field term HB
into the quadratic part by shift ’� ! ’� 	
g�BBxK�=

���
2

p
u�. Then, the backscattering term trans-

forms into

H0 �
2g?

�2�a�2

Z
dx cos�

���
8

p
’� 	 bx�; (5)

with b � 2g�BBK�=u�.
The Hamiltonian (3) decouples into charge and spin

sectors. While the charge excitations do not interact and
their Hamiltonian H� is quadratic, the spin sector is
described by the sine-Gordon model H� 	H0. In zero
magnetic field, the constant g? is renormalized at low
energies [6],

g?�D� �
g?�W�

1	 g?�W�
�vF

logWD
; (6)

where W is the initial, D is the running bandwidths, and
g?�W� is the ‘‘bare’’ interaction constant. The renormal-
ization group (RG) flow occurs along the line K� � 1	
g?=2�vF toward the fixed point K�

� � 1, g�? � 0. The
finite magnetic field does not affect the RG flow for
046801-2
energies larger than g�BB. For smaller energies, K�
becomes essentially independent of ", while g? flows
toward zero [13]. In this way, the nonlinear term H0 is
not relevant at large times, and can be treated as a per-
turbation. Since we are interested in the DOS at "!
g�BB, in the following we take D somewhat exceeding
2g�BB.

Before developing a rigorous calculation, we provide a
hint to the origin of the singularity in the DOS. Tunneling
of an electron may be viewed as spreading of charge and
spin densities, which initially at t � 0 were formed near
the barrier (x � 0). The charge propagates freely, while
the propagation of the spin density is affected by the
backscattering term Eq. (5). To demonstrate qualitatively
its effect, we expand H0 in ’� to the second order and
then derive the linear equation of motion for the field ’�.
The first-order expansion term only shifts by a small
amount the solution of that equation. The second-order
term generates a contribution / g? cos�bx�’� in the
equation of motion, and leads to the phenomenon of
Bragg reflection with wave vector b=2. As the result, the
backscattered component of ’� oscillates with frequency
!z � u�b=2 � K�g�BB. These oscillations give rise to
features in the DOS at energies " � �!z.

We start with retarded Green’s function

GR
s �x; x

0; "� � 
i
Z 1

0
dt ei"thf y

s �x; t� ;  s�x
0; 0�gi

(here f. . .g is anticommutator) and compute the tunneling
density of states as

��"� �
1

4��ikF�2
X
s

Im
@2

@x@x0

�������x�x0�0
GR
s �x; x0; "�: (7)

For slowly varying ’i�x� and #i�x�, one may neglect their
derivatives, and differentiate only the factors e�ikFx in the
electron operators (1). Equation (7) can be rewritten as

��"� �
1

2�2a
Re

Z 1

0
dt�G��t�ei"t 	 G��
t�e
i"t�

� �G��t� 	 G��
t��; (8)

where

G i�t� �
	
T exp

i#i�x � 0; t����
2

p exp

i#i�x � 0; 0����

2
p



(9)

are time-ordered Green’s functions of charge and spin,
and T denotes time ordering.

To compute these correlation functions at g? � 0, we
express the fields ’i and #i in terms of bosonic eigen-
modes aq, ayq of the Hamiltonian (4). Because of the
boundary condition (2), only odd modes contribute to ’i:
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’i�x; t� �
X
q

cq;i sinqx�a
y
q;ie


iuiqt 	 aq;ie
iuiqt�; (10)

#i�x; t� �
X
q

cq;i
Ki

cosqx
ayq;ie


iuiqt 
 aq;ie
iuiqt

i
:

Here cq;i � e
qa=2
��������������
�Ki=q

p
, and the short-distance cutoff

a � u�=D is related to the reduced bandwidth D. The
summation in Eq. (10) involves wave vectors q > L
1,
where L is the length of the system. One can compute the
average in Eq. (9) using the relations

eAeB � eA	Be1=2�A;B� and heAi � e1=2hA
2i; (11)

valid for any operators A and B linear in aq and ayq . At
zero temperature, the only nonzero average is haqa

y
q i � 1,

and one finds
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G �0�
i �t� �

�
ia

uijtj 	 ia



1=�2Ki�

: (12)

Substituting this expression into Eq. (8) and evaluating
the integral for 0� D, one arrives at the well-known
formula [5],

��0��"� �
C0

��1	 2�
j"j2; (13)

with the anomalous exponent 2 � �K
1
� 	 K
1

� �=2
 1,
and the prefactor

C0 �
1

�a

�
a
u�



1=�2K��

�
a
u�



1=�2K��

:

Expanding G� defined by Eq. (9) to the first order
in g?,
�G��t� � 

2ig?
�2�a�2

Z 1


1
dt0

Z 1

0
dxhT exp

�
i�#��t� 
 #��0�����

2
p

�
�fcos�

���
8

p
3��x; t0� 	 bx� 
 hcos�

���
8

p
3��x; t0� 	 bx�i0gi0;
we use Eqs. (10) and (11), and obtain

�G��t� � 

2ig?
�2�a�2

Z 1


1
dt0

Z 1

0
dx

�
a2

a2 	 4x2



K�

� G�0�
� �t� ��G	�x; t; t

0�eibx

	 �G
�x; t; t0�e
ibx�; (14)

where

�G��x; t; t
0� � �

2xu�t
u��t
 t0� � x	 ia sgn�t
 t0�

�
1

u�t0 � x	 ia sgn�t0�
: (15)

Unlike Eq. (12), the correction �G��t� contains an oscil-
lating part. We will retain only this part, since we are
interested in singularities at nonzero energies. The oscil-
lation originates from the point of enhanced singularity
in Eq. (15), x � u�t0 � u�t=2. The oscillating contribu-
tion to �G��t� is
�G��t�

G�0�
� �t�

� 

ig?
2u�

�
a

u�jtj



2�K�
1�

��t�ei!zt; (16)

with !z � g��BB, and renormalized Landé factor g� �
K�g. The preexponential time-dependent factor in
Eq. (16) is related, via integration in Eq. (14), to the
asymptotic (jxj ! 1) power-law behavior of the Green
function in the spin sector. This power-law asymptote is a
generic property of the Luttinger liquid, and is preserved
at any g?. This gives a reason to believe that the func-
tional form Eq. (16) of �G�t� is valid beyond the limit of
small g?.

Using Eqs. (8) and (12) at t > D
1, one finds the
correction to the DOS

���"� � �C0 Re ei��=2��2	1�
Z 1

D
1

cos"t dt

t2	1

�G��t�

G�0�
� �t�

; (17)

which is singular at 0 � �!z. Since Eq. (17) is even in ",
we consider further only " � !z. Integrating over the
time domain t� j"
!zj


1, we find the following for the
singular part:
���"�

��0��!z�
� 


g?�!z�

4u�

1

sin��

�������"
!z

!z

�������
�
�
��1	 2�
��1	 ��

�

�
cos�2�2
 �� for " > !z

cos�2�2	 �� for " < !z;
(18)
with the exponent � � 2	 2�K� 
 1�, i.e.,

� � 1
2�K


1
� 	 K
1

� 
 2� 	 2�K� 
 1�: (19)

Equation (18) is valid for arbitrarily strong interaction in
the charge channel, and confirms the existence of singu-
larity in DOS centered at energy

!z � g��BB;
g�

g
� 1	

g?�D��BB�
2�u�

: (20)
At small g?, which implies K� � 1, the main contribu-
tion to the exponent in Eq. (18) comes from the charge
mode. Therefore, the singularities of the DOS at " � 0
and " � !z have nearly identical exponents, � � 2. The
contribution (18) was found for zero temperature, and its
energy dependence is nonanalytic at any �. However, it
may be easily distinguished from the regular part of ��"�
only at � < 1. Also, finite temperature T smears the
singularity at j0
!zj ’ T.
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The DOS anomaly (18) is directly related to the bias
dependence of the tunneling conductance G�V� between a
conventional metal and a one-dimensional conductor.
The corresponding singular contributions are related as
�G�V�=G � ���eV�=�. Tunneling between the ends of
two identical one-dimensional conductors (such as an
intramolecular junction between carbon nanotubes [10])
also has a singularity at Zeeman energy. The tunneling
conductance can be calculated as G�V� � dI=dV, where
the current I�V� between the two conductors is propor-
tional to the convolution of the two corresponding DOS:

I�V� /
Z eV

0
d"��"���"
 eV�: (21)

Calculating this integral, one finds the singular contribu-
tion to the differential conductance,

�G�V�
G�V�

� 

g?
4u�

1

sin�2 �2	 ��

�������eV 
!z

!z

�������
2	�

�
��1	 22�

��1	 2	 ��
: (22)

The exponent 2	 � here coincides with 2� up to a small
term of the order of K� 
 1. This ‘‘exponent doubling’’ at
eV � !z is similar to that occurring at zero bias [10].

It is interesting to analyze Eq. (22) in the limit of weak
interactions, in which [6]

K� 
 1 �
g?

2�vF
�
U�2kF�
2�vF

; K� � K� 

U�0�
�vF

:

To the first order in the interaction potentialU�q�, Eq. (22)
yields �G=G � �U�2kF�=4�u�� ln�jeV 
!zj=!z�. This
result is in agreement with the first-order expansion of
the tunneling conductance obtained in [12]. However,
beyond this order, there is a difference between Eq. (22)
and Eq. (47) in [12]. It stems apparently from the inap-
plicability of the RG approach developed in [12] for the
treatment of tunneling at energies close to !z.

We derived Eqs. (18) and (19) for the single-mode
Luttinger liquid. In the case of carbon nanotubes, one
has to take into account the degeneracy between the two
conic points in the Brillouin zone [14]. Treating the
interaction in the charge channel nonperturbatively, as
we did before, we find the exponent of the singularity
at 0 � !z,

�nt � 2nt �
1
4�K


1
� 
 1�: (23)

Thus, the exponent �nt again nearly coincides with the
ZBA exponent 2nt. The reported values of 2nt in the ex-
periments with carbon nanotubes were 2nt � 0:3� 0:6,
and therefore the peak at 0 � !z should be sharp and easy
to observe.
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In conclusion, the application of a magnetic field to a
Luttinger liquid creates additional singularities (two
peaks) in the tunneling density of states. The power law
characterizing these singularities is related to the univer-
sal long-range behavior of the spin and charge excitations
in a Luttinger liquid. Because of this relation, the power
law persists at any interaction strength in the charge
channel. The magnitude of the peaks is determined by
the short-range interaction, which plays a minor role in
the charge physics of a Luttinger liquid and therefore is
hardly accessible in the measurements of the conventional
zero-bias anomaly of the tunneling conductance.
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