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Novel Turbulence Trigger for Neoclassical Tearings Mode in Tokamaks
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A stochastic trigger by microturbulence for a neoclassical tearing mode (NTM) is studied. The NTM
induces a topological change of magnetic structure and has a subcritical nature. The transition rate of
the probability density function for and statistically averaged amplitude of the NTM are obtained. The
boundary in the phase diagram is determined as the statistical long time average of the transition
conditions. The NTM can be excited by crossing this boundary even in the absence of other global
instabilities.
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diagram and its expression, are derived. We show that
the stochastic excitation of NTM is possible to occur

represents the cutoff due to the banana orbit effect
[16], and we choose a simple model, W1 � �2r
2

s . W2
Magnetized plasmas are nonuniform and far from
thermal equilibrium. Consequently, various kinds of bi-
furcations can appear [1,2], producing an abrupt change
of the topological structure of the magnetic field. In
tokamak and in other laboratory plasmas, such a process
appears as a magnetohydrodynamic (MHD) instability
named the tearing mode [3,4]. It is associated with mag-
netic field reconnection. Global perturbations with wave
numbers perpendicular to the magnetic field are unstable
and, due to the plasma resistivity, they can develop radial
components that break the field lines. An important prob-
lem is now investigated: the possibility of such magnetic
surface breaking appearing in ideally stable, low resis-
tivity plasmas.

One possible mechanism is based on a nonlinear in-
stability, the neoclassical tearing mode (NTM) [5–7].
This is a subcritically excited tearing mode under the
influence of the pressure gradient. The experiments have
shown that such perturbations with a finite amplitude
become unstable even for parameters corresponding to
linear stability [8–10] and that they can be triggered by
other global MHD instabilities (such as the sawtooth)
[10,11]. But, in some experiments, the excitation of this
instability was produced in the absence of the above
trigger [11,12]. The onset conditions of the NTM are
not yet clarified, although the suppression of this insta-
bility is necessary for stationary operation of high tem-
perature plasma [13]. The rate of stochastic transition was
determined at thermal equilibrium [14]. It is expected
that in nonequilibrium and turbulent plasmas the transi-
tion is triggered by the turbulence but there is no theo-
retical prediction for the excitation rate of the NTM.

In this Letter, we formulate a Langevin equation for
the NTM as a stochastic equation in the presence of the
noise source induced by background fluctuations.
The statistical properties of NTM amplitude, such as the
probability density function (PDF), the rate of excitation,
the average of amplitude, the boundary in the phase
0031-9007=03=91(4)=045003(4)$20.00 
without seed island if �p > �p� holds. (�p is the plasma
pressure normalized to the poloidal magnetic field pres-
sure.) We note that this mechanism is rather general.
For instance, in fluid dynamics it explains the transition
of a linearly stable system in a laminar state (flow in a
pipe) to a self-sustained turbulent state [15]. The transi-
tion is triggered by random disturbances.

The nonlinear instability of the NTM has been dis-
cussed, and a dynamical equation of Ohm’s law was
formulated for the evolution of the amplitude as a deter-
ministic variable
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A���A�A � 0; (1)

where A � ~AA�q
2R=Br3sq

0 is the normalized amplitude of
the �m; n	-Fourier component of helical vector potential
perturbation ~AA� at the mode rational surface, r � rs, and

� is the nonlinear growth rate ( 
� > 0 if unstable).
The safety factor q � rB=BpR as a topological index
satisfies the condition q�rs	 � m=n at r � rs. B is the
main magnetic field strength, r and R are minor and
major radii of torus, q0 � dq=dr, and m and n are poloi-
dal and toroidal mode numbers, respectively. The time is
normalized to poloidal Alfvén transit time, �Ap � qR=�A
(�A is the Alfven velocity) and the length to rs. The
magnetic island width w is expressed as w � A1=2. The
coefficient � is � � �k�
1

0 r

2
s �Ap � S
1, where �k

stands for a parallel resistivity, and S is the Lundquist
number.

An explicit form of the growth rate is given by


� � 2�0A
1=2 

C1

W2
1 � A

2 �
C2

W2 � A
; (2)

within the neoclassical transport theory, where the first,
second, and third terms of the right-hand side (rhs) stand
for the effects of current density gradient, polarization
drift, and bootstrap current, respectively. The term W1
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represents the cutoff determined by the cross-field energy
transport [17]. C1 � 2abs�p"

1=2�2br

2
s L

2
qL


2
p and C2 �

2abs�p"1=2LqL
1
p for the limit of small collisions

[7,18,19], �b is the banana width, Lq and Lp are the
gradient scale lengths of safety factor and pressure, re-
spectively, " is the inverse aspect ratio, and abs is a
numerical constant. The parameter �0 controls the linear
stability of the tearing mode [3,4]. When the amplitude A
takes finite values, 
� can be positive even if �0 < 0,
because C1 and C2 can be positive. Figure 1 illustrates the
growth rate as a function of A for the case of �0 < 0. The
marginal stability condition � � 0 can have three solu-
tions at A ’ 0, A � Am, and A � As (Am < As). Am and As
are the threshold and saturation amplitudes, respectively.
Near the linear stability boundary, �0 ’ 0, they can be
estimated as Am � C1C


1
2 and As ’ C2

2=4�
02.

The helical perturbation is subject to a random excita-
tion from the microturbulent noise. The level of noise is
evaluated from the Lagrangian nonlinearity terms, and a
stochastic equation is obtained instead of Eq. (1):
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A� ��A � s

�2

a2
� h;�Ah�k 
 s� h; Ah�k


 s
�Te
�A

�2

a2
�Ah;�Ah�k; (3)

where s � aq0=q and � is the collisionless skin depth
c=!pe.  h is the stream function and Ah is the vector
potential of the microscopic turbulence [20]. The suffix h
stands for the high mode numbers. The Poisson bracket
�u; v� is defined as �ru�rv	 � b, and b � B=B. �� � ��k
indicates the Fourier component that matches the test
macro mode, and k is the wave number of the macro mode.
FIG. 1. The normalized growth rate multiplied by amplitude
*A � �A=C2 is shown by the dashed line. Zeros indicate the
nonlinear marginal stability conditions for the deterministic
model. Normalized nonlinear potential S�A	=�C2W1 is shown
by the solid line. (Parameters are W1 � W2, C1=2C2W1 � 1,
and �0W1=2

1 =C2 � 
0:0922.)
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We employ a hierarchical approach. The microscopic
turbulence is in the nonlinearly marginal state [21] and
has much shorter autocorrelation time �ac than that of the
global perturbation. Fluctuations are statistically inde-
pendent, and the adiabatic approximation is taken. The
saturation levels  h and Ah can depend on A. We do not
consider such dependence here, but it can be introduced in
the model.

The rhs of Eq. (3) has two components. One is a
coherent part, which has a fixed phase with respect to
A. The coherent part would modify�,C1, andC2 [19].We
note that the sign of C1 and C2 can be changed. The
electric induction by microfluctuations has been studied
in conjunction with dynamo. The),�, or * dynamos have
been known [1]. In this Letter, however, we use Eq. (2) as
a starting assumption and leave the effects of turbulence
on � for future studies.

The other is an incoherent part. The relative phase to A
changes rapidly in time and contributes to the noise term,
being approximated to be random, i.e., ~SS�t	 � gw�t	,
where g is the magnitude and w�t	 indicates white noise.
~SS�t	 has a quadratic form of  h and Ah, and the local
instantaneous amplitude of ~SS�t	 is given as kk3hCA

2
h,

where numerical constant C � 
sf��2r
2
s � k
2

h 	 �
s

������������������
�mi=me

p
�2r
2

s with f �  h=Ah is introduced. Esti-
mations are made as �Ah � 
k2hAh and jrAhj � khAh
for microscopic turbulence, and as jrAj � kA for macro
test mode. kh is the typical mode number of the micro-
fluctuations, the inverse of which is separated from the
coherence length of the macro mode. (For a case of
ballooning mode turbulence in tokamaks, f is evaluated
in Ref. [21] and is of the order unity.) The statistical
average

�����
g2

p
is related to j~SSj by the law of large numbers.

Within the coherent area of global test mode, ‘k
1, a
large number (N � k2h‘k


1) of independent kicks contrib-
ute to ~SS�t	. (‘ is the radial scale length of the macro mode.
N is evaluated by noting a quasi-two-dimensional feature
of fluctuations.) The average

�����
g2

p
is N
1=2 times smaller

than the instantaneous local value of j~SSj. The magnitude
g is evaluated as

g2 � kk
2
h ‘


1j~SSj2�ac � ‘
1k3k4hC
2A4
h�ac; (4)

having a dependence like g2 / � ~BBr;h=B0	
4�ac. Ex-

perimental magnitude is explained later. The stochastic
equation of NTM amplitude A is rewritten as

@
@t
A� ��A � gw�t	; (5)

and A is now a stochastic variable. The statistical property
of the NTM amplitude A is studied. It is worthwhile to
compare it with Kramers’s idea for thermal equilibrium
[14]. In Eq. (5), there is a nonlinear force but no Einstein
drag term common in Brownian theory; the fluctuations
from turbulence are decidedly nonthermal unlike stan-
dard Langevin theory. The Fokker-Planck equation of
045003-2



FIG. 2. Amplitude of NTM as a function of the plasma
pressure. The solid line shows the statistical average hAi. A
thin dotted line indicates the threshold Am and saturation
amplitude As for the deterministic model. Normalized �p is
C2=�
�0W1=2

1 	, i.e., �2abs"
1=2Lqrs=�bLp�
�0	��p. (Parame-

ters are W1 � W2, C1=2C2W1 � 1, and �C2W1 � 5.)
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P�A	 is deduced from Eq. (5) as

@
@�
P�
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@A

�
���

1

2
g
@
@A
g
�
P � 0: (6)

The stationary solution Peq�A	 is expressed as Peq�A	 /
g
1 exp�
S�A	� by use of a nonlinear dissipation function
as S�A	 �

R
A
0 2���A0	g
2A0dA0 which is proportional to

the entropy production rate near the thermal equilibrium
[1]. Using Eqs. (2) and (4), one has

S�A	 � �

�



4

3
�0A3=2 �

1

2
C1 ln

�
1�

A2

W2
1

�


 C2

�
A
W2 ln

�
1�

A
W2

��	
; (7)

with � � 2S
1‘k
3k
4
h C


2A
4
h �


1
ac . The coefficient �

shows a characteristic value of the ratio between the
dissipation for crossing over the barrier and excitation
by turbulence noise. Its magnitude and dependence are
discussed at the end of this Letter. The PDF is given
as Peq�A	 / exp�� 4

3�
0A3=2 � �C2A	�1�

A2

W2
1
	
�C1=2 �

�1� A
W2
	
�C2W2 . The PDF has a stretched non-Gaussian

exponential form with power-law dependence. The expo-
nential term is determined by the damping by current
density gradient and the drive by bootstrap current. The
power-law decay is mainly due to the polarization drift
effect. The minimum of S�A	, i.e., zero of �, predicts the
peak of PDF and the probable value of A.

For the case of a bistable state, the nonlinear potential
S�A	 is shown by solid curve in Fig. 1, which has two
minima at A � 0 and A � As, separated by a local maxi-
mum at A � Am. Statistical transitions take place between
these solutions. The dominant (i.e., the most probable)
state is determined by the balance between the transition
for excitation (from A � 0 to A � As) and the decay
(from A � As to A � 0). The long time average, i.e., the
statistical average hAi, is calculated from the PDF.

Calculating a flux of probability density from Fokker-
Planck Eq. (6) [1,22], the frequencies of excitation and
decay are expressed as

rex �
�

�������������
�0�m

p
23

exp�
S�Am	�; (8a)

rdec �
�

�������������
�s�m

p
23

exp�S�As	 
 S�Am	�; (8b)

respectively, where the time rates �m;s are given as
�m;s � 2Aj@�=@Aj at A � Am and A � As. Peq�A	 has a
peak at A � 0. A noise level where the NTM is not
excited is evaluated from a local average of A near
A � 0, being given as hA0i � 0:5�
��0	
2=3, and yields
�0 � ��hA0i	. Note that �0;m;s are normalized, being of
the order unity.

The long time average is given as hAi � �Asrex �
hA0irdec	�rex � rdec	
1. hAi approaches As if rex > rdec
holds. It reduces to hA0i if rex < rdec. The phase boundary
045003-3
for the statistical average is determined by the condition
rex � rdec. Apart from a logarithmic dependence, the
condition is given by S�As	 � 0. Figure 2 shows the
statistical average hAi, together with threshold and satu-
ration amplitudes (Am and As), as a function of �p. hAi
drastically changes across the condition �p � �p� , a for-
mula of which is derived as follows. From Eq. (7), the
condition S�As	 � 0 is rewritten as 
 4

3 �
0A3=2
s � C2As 


1
2C1 ln�A

2
sW


2
1 	 where As � W1; W2 is assumed. Using the

relation As ’ C2
2=4�

02, we have

�0 � �0
� � 


������
1

12

r
C3=2
2 C
1=2

1 �ln�3C1=2C2W1	�

1=2; (9)

where dominant terms are retained. The boundary �0
�

is negative and of the order unity. Equation (9) is rewrit-
ten as �0 � 


��������������������
"Lq=3Lp

q
�ln�3Lq=2Lp	�
1=2absrs�
1

b �p
by substituting C1 and C2. It is reformulated in a form
of a critical pressure as �p � �p� �

��������������������
3Lp="Lq

q
�

�ln�3Lq=2Lp	�1=2a
1
bs �
�0	�br
1

s .
An example of the transition frequency is estimated in

the following. Near the linear stability condition, �0 ’ 0,
one has S�A	 � �C1W


2
1 
 C2W


1
2 	A2=2� C2W


2
2 A

3=
3
 �C1W


4
1 � C2W


3
2 	A4=4� . . . . The potential barrier

S�Am	 is given by the maximum. For the case of W2 >
W1, one has a simple estimate S�Am	 ’ �1

2C2W2

1=C1W2	C1=4� C1=4, by keeping the first order
correction of W1=W2. Substituting it into Eq. (8a), one
gets the excitation rate of NTM as

rex ’
�

�������������
�0�m

p
23

exp

�

�

C1

4

�
: (10)

The parameter � is the key for the transition fre-
quency. For L-mode plasmas, when one employs the
045003-3
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current-diffusive ballooning mode as micro mode, one
has Ah ’ 10s)2��=rs	

2,  h ’ 10)3=2��=rs	
2, and �ac �

)
1=2, where ) � 
q2Rd�=dr is the normalized pres-
sure gradient [23]. Substituting them into the formula of �
below Eq. (7), one has � � 2‘k
3�
)
1=2�1� )	 �
s

������������������
�mi=me

p
�
210
4s
4)
11=2S
1��=rs	


8. The argument
�C1=4 in Eq. (10) may be simplified as 4
1abs"

1=2L2
q �

L
2
p s
2�me=�mi	‘k
310
4)
11=2�pS
1�2br

6
s�
8 for

�mi=me > 1. This result shows that when the resistivity
becomes so low as to satisfy the condition S ’
10
4�me=�mi	‘k
3)
11=2�2br

6
s�
8, the exponential term

becomes of the order of unity, and the transition fre-
quency of the order of � is expected. When the plasma
pressure gradient becomes large, a strong turbulence
(M mode) has been predicted [21,24]. In this case,
~AAh is enhanced by the factor of �)�imi=me	1=2.
One has �C1=4 ’ 4
1abs"1=2L2

qL
2
p s
2�me=�mi	3‘k
3 �

10
4)
15=2�pS
1�2br
6
s�
8. The condition of frequent

transitions, �C1=4� 1, is given as S ’
10
4�me=�mi	

3‘k
3)
15=2�2br
6
s�


8. This condition
might be easily satisfied in modern tokamaks.

In summary, we have developed a statistical theory for
the excitation of nonlinear NTM. The stochastic equation
is formulated including the subcritical excitation mecha-
nism of NTM. The rate of transition and statistical aver-
age of amplitude are derived, and the phase boundary in
plasma parameter space, �p� or �0

�, is obtained. Linearly
stable systems are prone to nonlinear instability if
S�As	< 0 holds. The formula is applied to either cases
of microfluctuations or of other random MHD activities.
The experimental database for the presence of NTM must
be compared with the result of the phase boundary de-
rived from the statistical theory. The rate of stochastic
transition depends on the microfluctuation level and is
evaluated for example cases. However, the boundary is
given by S�As	 � 0 and is insensitive to the magnitude of
microfluctuations. It is plausible that the stochastic tran-
sition without the trigger by large MHD events (e.g.,
sawtooth or fish-bone instabilities) can be observed in
high temperature tokamak plasmas if the condition �p >
�p� is satisfied. This explains observations in Refs. [11,12].

Equation (8) is a generalization of the result of thermal
equilibrium, i.e., Eq. (476) of Ref. [14] that recovers
Arrhenius’s law, to the case of the turbulence trigger.
Owing to the turbulence trigger, the transition probability
is greatly enhanced and the variation of the average hAi
across �p � �p� becomes less sharp. The energy of mi-
crofluctuations is estimated in tokamak turbulence and is
about �2rs5
3

D times larger than that in thermal equilib-
rium (x23 of Ref. [1]). In the latter case, � is larger by a
factor �4r2s5
6

D and the transition is very difficult to occur.
This Letter provides a theoretical framework for future

study. There are a lot of effects and contributions which
045003-4
could be incorporated in the nonlinear statistical theory.
These are left for future studies and will give quantitative
results.
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