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Anomalous Heat Conduction and Anomalous Diffusion in One-Dimensional Systems
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We establish a connection between anomalous heat conduction and anomalous diffusion in one-
dimensional systems. It is shown that if the mean square of the displacement of the particle is h�x2i �
2Dt��0<� � 2�, then the thermal conductivity can be expressed in terms of the system size L as
� � cL	 with 	 � 2� 2=�. This result predicts that normal diffusion (� � 1) implies normal heat
conduction obeying the Fourier law (	 � 0) and that superdiffusion (� > 1) implies anomalous heat
conduction with a divergent thermal conductivity (	 > 0). More interestingly, subdiffusion (�< 1)
implies anomalous heat conduction with a convergent thermal conductivity (	< 0), and, consequently,
the system is a thermal insulator in the thermodynamic limit. Existing numerical data support our
results.
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nel (the internal angles are irrational multiples of 
) is
diffusive and has a normal heat conduction. There-

models deviate largely from this value for reasons to be
investigated.
Does heat conduction in one-dimensional (1D) systems
obey the Fourier law? If it does, what are the necessary
and sufficient conditions? If it does not, then what is the
reason for this and how does the thermal conductivity
diverge or converge with the system size L? These ques-
tions have attracted increasing attention in recent years
[1–21]. Although some progress has been achieved, many
puzzles remain. For example, in an attempt to establish a
connection between heat conduction and the underlying
microscopic dynamics, some controversial examples ex-
ist. In their model Casati et al. [2] show that at onset of
global chaos heat conduction crosses over from an abnor-
mal one to a normal one obeying the Fourier law. It is thus
concluded that chaos is a deciding factor. Later on, in
order to show that exponential instability is a necessary
condition, Alonso et al. [12] studied the heat conduction
in a Lorentz gas channel, a quasi-1D billiard with circular
scatterers, and found that heat conduction obeys the
Fourier law. However, the results from 1D Ehrenfest gas
channels [15], in which the Lyapunov exponent is zero,
show that the Fourier heat law might not have any direct
connection to the underlying dynamical chaos, because
heat conduction can be normal and abnormal, depending
on whether or not disorder is introduced.

Recently, a quasi-1D triangle billiard model, which
consists of two parallel lines of length L at distance d
and a series of triangular scatterers, has been introduced
and studied[16]. In this model, no particle can move
between the two reservoirs without suffering elastic col-
lisions with the triangles. Therefore this model is analo-
gous to the Lorentz gas channel studied in [12] with
triangles instead of disks, and the essential difference
is that in the triangular model the dynamical instability
is linear and therefore the Lyapunov exponent is zero. It is
found that the motion inside the irrational triangle chan-
0031-9007=03=91(4)=044301(4)$20.00 
fore deterministic diffusion and normal heat transport,
which are usually associated to full hyperbolicity, can
take place in systems without exponential instability.
Another example is the Fermi-Pasta-Ulam (FPU) model
[4], which has nonzero Lyapunov exponent; however,
the heat conduction in this model does not obey the
Fourier law.

The heat conduction in the rational triangle model (the
internal angles are rational multiples of 
) and in the FPU
model is anomalous and does not obey the Fourier law;
the thermal conductivity � diverges with system size L as
L	 with 	 � 0:22 for the rational triangle model [16] and
0:34<	< 0:44 for the FPU model [4]. Indeed, similar
divergent behavior has been observed in many 1D sys-
tems. For example, in the binary hard sphere model
[19,20], 0:22<	< 0:35, in single wall nanotubes 0:22<
	< 0:37 [18], and in many classical lattices such as the
harmonic lattice, 	 � 1 [22], disordered harmonic lat-
tice, 	 � 1=2 [23], and the Frenkel-Kontorova (FK)
model under the condition of T=K � 1, 0<	< 1 [14],
where T is temperature and K is the effective amplitude of
a sinusoidal on-site potential.

Obviously, a universal value of 	 does not exist; it
differs from model to model. Most recently, Narayan
and Ramaswamy [21] show theoretically that in a 1D
momentum-conserving continuous system, the heat con-
duction is anomalous, and the thermal conductivity di-
verges with system size L as L1=3. Up to now, in all
available numerical results only the heat conduction in
a (5,5) single wall nanotube [18] shows an exponent (	 	
0:32) close to this 1=3 [24]. Despite the fact that the
conduction mechanism is similar, a (10,10) single wall
nanotube shows a different value [18] for unknown rea-
sons. The numerical results from other models such as the
FPU model, the harmonic model, and other billiards
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On the other hand, even if the momentum conservation
breaks down, the heat conduction can be anomalous such
as that in the Frenkel-Kontorova model [14]. The question
becomes how to explain this anomalous heat conduction,
in particular, the value of the exponent 	 in the thermal
conductivity. A general theory is still lacking. The only
existing theory is for the 1D harmonic chain [22], in
which the phonons transport along the chain ballistically
and the thermal conductivity, �, diverges as L, i.e., 	 � 1.

In this Letter, we would like to find the microscopic
origin of the anomalous heat conduction observed in
many 1D models. We are not restricted to any specific
model. This should give us a more general way to under-
stand the heat conduction in 1D systems.

As is well known, depending on the value of exponent
� in the mean square of displacement of the particle,
h�x2i � 2Dt� with 0<� � 2, 1D microscopic motion
can be classified into ballistic motion, � � 2, superdiffu-
sion, 1<�< 2, normal diffusion, � � 1, and subdiffu-
sion �< 1. Ballistic transport is observed in the
harmonic lattice. Normal diffusion shows up in the FK
model in a certain parameter regime [5], the disordered
FPU model [10], the Lorentz gas channel [12], the dis-
ordered Ehrenfest gas channel [15], the irrational triangle
channel [16], and the alternative mass hard-core potential
model [17]. In some billiard models, superdiffusion
[15,16,25–27] and subdiffusion [25] are observed. Super-
diffusion and subdiffusion can be studied from the frac-
tional Fokker-Planck equation; for detailed theoretical
investigation and discussion about the anomalous diffu-
sion, please refer to review articles [27,28] and the refer-
ences therein.

To establish a connection between the microscopic
process and the macroscopic heat conduction, let us con-
sider a 1D model of length L whose two ends are put into
contact with thermal baths of temperature TL and TR for
the left end and the right end, respectively. Suppose the
energy is transported by energy carriers (they are pho-
nons in lattices and particles in billiard channels) from
the left heat bath to the right heat bath and vice versa. If
the mean square of displacement of the carrier, with
velocity v, inside the system can be described by

h�x2i � 2Dv�t�; (1)

then the so-called ‘‘mean first passage time’’ (MFPT) is
[29]
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Obviously, if the 1D system is isotropic, the MFPT for the
carrier traveling from the right to the left end htRLi is the
same as htLRi.

If the heat bath is a stochastic kernel of Gaussian type,
namely, the probability distribution of velocities is
044301-2
p�v; T� � 4
v2 exp��v2=2T�=�2
T�3=2, the MFPT be-
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We define the heat current as the energy exchange
between two heat baths in unit time. Thus the current
induced by a carrier (m � 1) with velocity v moving
from left to right and coming back is

j �

R
1
0

v2

2 
p�v; TL� � p�v; TR��

htLRi � htRLi
�

TL � TR

2htLRi
: (4)

If the temperature difference between the two baths is
sufficiently small so that rT � �TR � TL�=L, then the
thermal conductivity, � � �Lj=rT, is

� � cL	; 	 � 2� 2=�; (5)

and the constant is c � 3
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Equation (5) is the central result of this Letter [30]. It
connects heat conduction and diffusion quantitatively.
The main conclusion is that an anomalous diffusion in-
dicates an anomalous heat conduction with a divergent
(convergent) thermal conductivity. More precisely, our
result tells us that ballistic motion means thermal con-
ductivity proportional to the system size L, normal dif-
fusion means a normal heat conduction obeying the
Fourier law, superdiffusion means a divergent thermal
conductivity, and subdiffusion means a zero thermal con-
ductivity in the thermodynamic limit. In the following,
we compare our results with the existing analytical and
numerical results.

Ballistic motion, � � 2, leads to a divergent thermal
conductivity � / L. The only existing analytical result is
heat conduction in a 1D harmonic lattice. It is known that
heat is transported by phonons in the lattice model.
Because there are no resistance and umklapp process,
the phonons transport ballistically in the harmonic lattice
model; thus � � 2. From our formula (5), the thermal
conductivity in the 1D harmonic lattice diverges as L	

with 	 � 1; this is exactly what was shown by Lebowitz
and co-workers [22] (‘‘*’’ in Fig. 1).

Normal diffusion, � � 1, means that the thermal con-
ductivity is a size independent constant, 	 � 0; i.e., the
heat conduction obeys the Fourier law. For example, in the
1D Frenkel-Kontorova model [5], in a certain range of
parameter such as T=K � 1 [31], the phonons transport
diffusively [7]; thus the thermal conductivity is finite and
independent of the system size L. The disordered FPU
model also has a finite thermal conductivity due to the
random walklike scattering process in the chain [10].
Other 1D models showing normal diffusion and normal
thermal conduction are the 1D Lorentz gas channel [12],
the 1D disordered Ehrenfest gas channel [15], the 1D
irrational triangle channel [16], the alternative mass
hard-core potential model [17], and some 1D polygonal
044301-2



FIG. 1 (color online). The �� 	 plot. Normal diffusion:
� represents models with a normal diffusion and a normal
heat conduction, i.e., � � 1 and 	 � 0, such as the Lorentz gas
channel [12], the Frenkel-Kontorova model [5], the �4 model
[9], the disordered FPU model [10], the disordered Ehrenfest
gas channel [15], the irrational triangle channel [16], the
alternative mass hard-core potential model [17], and some
rational polygonal channel[25], etc. Ballistic motion: * repre-
sents the ballistic transport, i.e., � � 2 and 	 � 1, such as the
1D harmonic lattice model. Superdiffusion: 5, 1D Ehrenfest
gas channel with right angle triangle scatterers[15]; �, 1D
channel with rational triangle scatterers[16]; 4, polygonal
billiard channel with one irrational [�

���
5

p
� 1�
=4] and one

rational (
=3) triangle; �, a 1D triangle-square channel [26].
Subdiffusion: the polygonal billiard channel with one irrational
angle [�

���
5

p
� 1�
=4] and one rational angle (
=4) [25],

�, from the channel length 1 � L � 40; �, from the channel
of length 40 � L � 80.
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billiard channels with certain rational triangles [25]. ‘‘�’’
in Fig. 1 represents all models with normal diffusion.

Superdiffusion, 1<�< 2, implies an anomalous heat
conduction with a divergent thermal conductivity L	. The
exponent 0<	< 1 differs from model to model. Here
we take the billiard models as our examples because they
are very clean, and both the diffusion and thermal con-
ductivity in these models can be calculated very accu-
rately. The first example is the 1D Ehrenfest gas channel
in which the scattering obstacles are isosceles right tri-
angles periodically posted along the channel [15]. In this
model one has � � 1:672. From our analytical result (5),
the thermal conductivity should diverge as L	 with 	 �
2� 2=� � 0:804 which agrees with the result from the
simulation of heat conduction 	 � 0:814 [15] (‘‘5’’ in
Fig. 1). The second example is the 1D channel with
triangles whose interangles are rational multiples of 

[16]. This model shows a superdiffusion with � � 1:178.
The divergent exponent of thermal conductivity is 	 �
0:302. This exponent is slightly larger than the one ob-
tained from thermal conductivity simulation 	 � 0:22
(‘‘�’’ in Fig. 1). This deviation is due to the finite size
effect in the heat conduction simulation.

Subdiffusion, �< 1, results in an anomalous heat con-
duction with a convergent thermal conductivity, i.e., � /
044301-3
L	, with 	< 0. This is an interesting result implying that
the system becomes a thermal insulator in the thermody-
namic limit L ! 1. Although there are many examples
showing subdiffusion [32–36], a systematic study on the
heat conduction in such a system is still lacking. The only
existing example is the heat transport in a polygonal
billiard which supports our conclusion [25]. Most re-
cently, Alonso et al. [25] show that in a very special
configuration, � � 0:86, and the thermal conductivity
goes as �� L�0:63 (‘‘�’’ in Fig. 1). As L goes to infinity,
the thermal conductivity goes to zero. According to our
formula (5), if � � 0:86, 	 � �0:33 which is larger than
the one obtained by Alonso et al. [25]. This is not a
surprise, because the channel length in their study of
thermal conductivity is too small (L � 40). If the channel
is longer, the value of 	 will become much closer to our
theoretical estimation (	 � �0:33). To demonstrate this,
we extend the thermal conductivity simulation from L 2

1; 40� used by Alonso et al. [25] to L 2 
40; 80�, and we
find that 	 � �0:48 (‘‘�’’ in Fig. 1), which is closer to
	 � �0:33 than the one obtained by Alonso et al. If
L ! 1, one can expect 	 goes to �0:33.

All numerical results are summarized and represented
in Fig. 1, where we draw 	 versus �, and compare with
Eq. (5). As is shown, Eq. (5) is exact for both normal
diffusion and the ballistic motion. The agreement with
most existing numerical data is good. However, discrep-
ancies remain for some models mainly due to the limited
numerical simulations. The best data close to curve 	 �
2� 2=� are the simulation from the 1D Ehrenfest gas
channel [15]. This is because the channel length used in
the simulation is the longest one (L� 103) among all the
available data.

In summary, we have established a connection between
anomalous heat conduction and anomalous diffusion in
1D systems. Our central result Eq. (5) includes all pos-
sible cases observed in different classes of 1D models,
ranging from subdiffusion, normal diffusion, and super-
diffusion to ballistic transport. Several conclusions can be
drawn: (i) A normal diffusion leads to a normal heat
conduction obeying the Fourier law. (ii) A ballistic trans-
port leads to an anomalous heat conduction with a diver-
gent thermal conductivity � / L. (iii) A superdiffusion
leads to an anomalous heat conduction with a divergent
thermal conductivity in a thermodynamic limit. (iv) More
importantly, our result predicts that a subdiffusion sys-
tem will be a thermal insulator. Existing numerical data
support our results.

We should mention that the subdiffusion process has
been observed in many real physical systems such as
highly ramified media in porous systems [32], percola-
tion clusters [33], exact fractals [34], the motion of a bead
in a polymer network [35], and charge carrier transport in
amorphous semiconductors [36]. Any numerical simula-
tion or real experimental measurement of thermal con-
ductivity in these systems will be very interesting and
044301-3
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will allow one to test the theory given in this Letter. More
importantly, it will have a wide application in designing
novel thermal devices.
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[11] C. Giardiná et al., Phys. Rev. Lett. 84, 2144 (2000); O.V.

Gendelman and A.V. Savin, ibid. 84, 2381 (2000).
[12] D. Alonso, R. Artuso, G. Casati, and I. Guarneri, Phys.

Rev. Lett. 82, 1859 (1999).
[13] A. Dhar and D. Dhar, Phys. Rev. Lett. 82, 480 (1999);

K. Aoki and D. Kusnezov, ibid. 86, 4029 (2001);
C. Mejia-Monasterio, H. Larralde, and F. Leyvraz,
ibid. 86, 5417 (2001); A.V. Savin, G. P. Tsironis, and
A.V. Zolotaryuk, ibid. 88, 154301 (2002); Y. Zhang and
H. Zhao, Phys. Rev. E 66, 026106 (2002).

[14] B. Li, Z. Zheng, and B. Hu, report; A.V. Savin and O.V.
Gendelman, Phys. Rev. E 67, 041205 (2003); J. K.Y. Ang,
B.S. thesis, National University of Singapore, 2003.

[15] B. Li, L. Wang, and B. Hu, Phys. Rev. Lett. 88, 223901
(2002).

[16] B. Li, G. Casati, and J. Wang, Phys. Rev. E 67, 021204
(2003).

[17] B. Li, G. Casati, J. Wang, and T. Prosen, report.
[18] S. Maruyama, Physica (Amsterdam) 323B, 193 (2002);

P. Grassberger and L. Yang, cond-mat/0204247.
[19] A. Dhar, Phys. Rev. Lett., 86, 3554 (2001); G. Casati and

T. Prosen, Phys. Rev. E 67, 015203(R) (2003).
01-4
[20] P. Grassberger, W. Nadler, and L. Yang, Phys. Rev. Lett.
89, 180601 (2002); H. Li and H. Zhao, ibid. 89, 079401
(2002).

[21] O. Narayan and S. Ramaswamy, Phys. Rev. Lett. 89,
200601 (2002).

[22] Z. Rieder, J. L. Lebowitz, and E. Lieb, J. Math. Phys.
(N.Y.) 8, 1073 (1967); A. J. O’Connor and J. L. Lebowitz,
J. Math. Phys. (N.Y.) 15, 692 (1974).

[23] A . Casher and J. L. Lebowitz, J. Math. Phys. (N.Y.) 12,
1701 (1971).

[24] It should be noted that in the binary sphere model, some
authors [20] claim that the divergent exponent is close to
Narayan and Ramaswamy’s theoretical prediction 1=3,
while the others [19] disagree. A careful and thorough
study is needed to clarify this disagreement.

[25] D. Alonso, A. Ruiz, and I. de Vega, Phys. Rev. E 66,
066131 (2002).

[26] B. Li and J. Wang, report.
[27] G. M. Zaslavsky, Phys. Today 8, No. 8, 39 (1999); Phys.

Rep. 371, 461 (2002).
[28] J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127

(1990); R. Metzler and J. Klafter, ibid. 339, 1 (2000).
[29] R. Metzler and J. Klafter, Physica (Amsterdam) 278A,

107 (2000); G. Rangarajan and M. Ding, Phys. Rev. E 62,
120 (2000); M. Gitterman, ibid. 62, 6065 (2000).

[30] Alternatively, Eq. (5) can be derived from the fractional
Fokker-Planck equation by replacing time t by t�, and
other simple ways; see Ref. [26] for more information.

[31] It is worth mentioning that heat conduction in the
Frenkel-Kontorova model obeys the Fourier law only in
an intermediate regime of parameter T=K. It is clear that
in the two extremes, T=K � 1 and T=K � 1, heat con-
duction violates the Fourier law. The reason is that, in the
case of T=K � 1, the sinusoidal on-site potential can be
approximated by a harmonic on-site potential. In this
case a temperature gradient cannot be set up; the heat
conduction is much like the case of a harmonic chain. In
the case of T=K � 1, the thermal fluctuation is so large
that the on-site potential is smeared out; namely, the on-
site potential will not be an effective barrier for the
phonon transport. Thus the role of on-site potential can
be neglected. For more quatitative analysis of the cross-
over from a normal to an anomalous heat conduction in
the Frenkel-Kontorova model, please see Ref. [14].

[32] F. Klammler and R. Kimmich, Croat. Chem. Acta 65,
455 (1992).

[33] A. Klemm, H.-P Müller, and R. Kimmich, Phys. Rev. E
55, 4413 (1997).

[34] J. Klafter, G. Zumofen, and A. Blummen, J. Phys. A 25,
4835 (1991).

[35] F. Amblard et al., Phys. Rev. Lett. 77, 4470 (1996);
E. Barkai and J. Klafter, ibid. 81, 1134 (1998).

[36] E.W. Montroll and H. Scher, J. Stat. Phys. 9, 101 (1973);
H. Scher and M. Lax, Phys. Rev. B 7, 4491 (1973); Q. Gu
et al., Phys. Rev. Lett. 76, 3196 (1996).
044301-4


