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Phase Imaging and Nanoscale Currents in Phase Objects Imaged with Fast Electrons
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We derive the magnetic transport-of-intensity equation (MTIE) that links defocused contrast of
magnetic nanoobjects imaged by partially coherent electron waves to their micromagnetic parameters.
This provides Maxwell’s explanation for observable contrast in terms of the Z component of currents
existing around vortices in superconductors and domain vortices and walls in ferromagnets. The
solution of the MTIE via Fourier transform is used for quantitative mapping of magnetic flux and
projected induction in magnetic and superconducting materials imaged by Lorentz microscopy.
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in magnetic samples. The TIE approach [7,15] offers little
insight, since it did not take into account the Aharonov- ��i �hr� eA�2��r; z� � 2m0e�U� � �V���r; z�; (1)
The problem of quantitative phase imaging plays a
fundamental role in many fields of physics, such as light
optics, electron- and x-ray microscopy, diffraction, and
neutron radiography. A knowledge of phase shifts enables
direct mapping of electrostatic and/or magnetostatic po-
tentials of thin foils, film transistors, and magnetic
samples down to a spatial resolution limited by the
chosen imaging technique. The holographic principle in-
troduced by Gabor in light optics [1] offers one possible
approach to retrieval of phase ’�x; y� along with the
amplitude a�x; y�, contributing to the total object wave
function � � a exp�i’�. Remarkable progress in under-
standing superconductors [2,3] and magnetic materials
[4,5] was achieved by phase-sensitive off-axis electron
holography. However, the quality of interferograms pro-
duced is sensitive to noise, requires highly coherent elec-
tron sources, and, in general, is technically demanding.

A noninterferometric approach to phase retrieval of
partially coherent optical waves was suggested by
Teague [6] and elaborated by others (see, for example,
Refs. [7–9]), including extension to x-ray [10] and neu-
tron [11] beams. This method requires measuring the
intensity I�x; y; z��z� at different imaging planes, z�
�z, to construct the intensity derivative @I=@z, directly
related to the phase of propagating wave by the so-called
‘‘transport-of-intensity’’ equation (TIE). So far, the use
of this approach was limited, in part, by the difficulties in
solution methods. In addition, some boundary constraints
in terms of the Dirichlet-Neumann boundary-value prob-
lem should be known from the experiment for a unique
TIE solution. Such a solution exists in the special case of
‘‘zero intensity’’ (I � 0) outside the image perimeter [8].
A more general Neumann condition suitable for fast
Fourier transform was analyzed recently [12].

In contrast to holographic studies, there have been only
a few attempts of TIE imaging, originally developed
for optical refraction, for studies of magnetic objects
[12–14]. In fact, no clear theory is available [2] between
the defocused image contrast and local induction B�x; y�
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Bohm (AB) phase shift. Hence, the physical mechanism
of magnetic-phase contrast, in general, remains unclear.
To solve this problem, we examine the magnetic TIE
concept in conjunction with the AB phase shift.

In this Letter, we briefly analyze electron wave propa-
gation through a magnetic object and derive a new im-
portant relation between the magnetic-phase contrast of
defocused images and density of nanocurrents present in
superconductors and magnetic materials imaged with fast
electrons. We call it the magnetic transport-of-intensity
equation (MTIE), which allows a novel Maxwell-
Ampere quantitative-current interpretation of contrast
for many phenomena in magnetic materials (supercon-
ducting [16,17] and magnetic vortices [4,13], domain
ripple, and cross-tie wall [12] defocused contrast in poly-
crystalline ferromagnets, including nanomagnets) and
opens a way to quantitative Lorentz phase microscopy.
We also provide a fast MTIE solution method, well suited
for magnetic flux and in-plane projected magnetization
mapping in thin magnetic films and foils.

Consider the stationary wave field describing the
propagation of a monochromatic electron wave � �
A exp�ikzz� with complex amplitude A � a�r; z� �
exp�i’�r; z�� along the optical axis Z of a transmission
electron microscope (TEM) under typical conditions of
Lorentz microscopy, when fast electrons with total en-
ergy of E � eU�m0c

2, eU 	 200–300 keV interact
with small magnetic objects of 50 nm–10 �m size.
Here ’�r; z� means a small phase shift fj’�r; z�j �
jkzzjg experienced by a ‘‘free’’ electron wave at a distance
z in a r�x; y� point of plane normal to the optical axis,
when moving with the nominal phase S � kzz � �pz= �h�z
through the sample’s electromagnetic fields. For a free
electron we assume kz � 2�=� and pz � �2m0eU

��1=2,
where kz, pz, m0, and � are the electron wave number,
impulse, rest mass, and wavelength, respectively. The
motion of an almost-free electron wave obeys the relativ-
istic time-independent Schrödinger equation
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where V and A are the electrostatic and vector (divA �
0) sample potentials; U� � U�1� ��=2 is the accelerat-
ing electron potential corrected by the relativistic Lorentz
factor � � 1� eU=m0c2. It is useful to split the solution
of Eq. (1) by two half-spaces: area A (z < t0, including the
sample), and area B (z � t0, free from sample potentials).
The information about sample fields is encoded in a phase
shift ’�r; z� of an elastically scattered electron wave
(phase S2 � kzz� ’) to be compared with electron
‘‘reference’’ wave (phase S1 � kzz) propagating far
enough from the magnetic sample. Then the solution of
Eq. (1) at z! t0 is reduced to a modified AB expression
for the phase shift ’ � S2 � S1 as

’�r; z� �
��
�U�

Z z

�1
V�r; z0�dz0 �

e
�h

Z z

�1
Az�r; z0�dz0; (2)

where the value of the ’�r; z� shift reaches its limit at z 	
t0 (‘‘exit wave’’ plane) and will not change at z � t0, since
both electron waves propagate further in a field-free space
(area B). For such space the continuity equation derived
from Eq. (1) yields

e �h
m

r � �a2�r; z�rS�r; z�� �
e �h
m

r � �j0�r; z�� � 0: (3)

This expresses the conservation principle for current-
density flow j � �e �h=m�a2rS (or current-probability
flow j0 � a2rS) for field-free space. Both quantities
of intensity I � ��� � a2�r; z� and current-density
flow j�r; z� are observable and measurable quantum-
mechanical parameters, sufficient, in principle, to recon-
struct the object phase shift. By taking into account
�hS2�r; z� � �h�kzz� ’�r; z�� Eq. (3) at z � t0 yields

r � fI�r; z��nzkz �r’�r; t0��g � 0; (4)

where nz is a unit vector along the beam direction. In
paraxial form it transforms to

�r? � �I�r; z�r?’�r; t0�� � kz@I�r; z�=@z (5)

formally similar to the optical TIE equation [6,8]; how-
ever, the phase shift ’ is well defined now by the AB
expression via Eq. (2). Here, the gradient r? operates
only in the r�x; y� plane. Integrating Eq. (5) over the
surface area D�r� with a boundary @D � L in the r plane
normal to nz at arbitrary z � t0 results in the expression
[by dropping the argument �r; z�]

�kz@z
ZZ
D
Ids �

ZZ
D
r?�Ir?’�ds �

I
L
I@’=@n?dl

(6)

known as the energy flow conservation principle [8,12].
Here, we used the integral identity for the L-loop integral
following from Green’s theorem with an outward normal
derivative for a loop contour defined as @’=@n? � n? �
r’. To obtain the information on magnetic induction in a
sample, encoded in a phase shift, consider the in-plane
gradient r?’�r; z� from Eq. (2) at z! t0 as
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r?’ � $r?

Z z

�1
Vdz0 �

e
�h

Z z

�1
�nx@xAz � ny@yAz�dz0:

(7a)

The interaction constant$�E� � ��=�U� in (7a) depends
only on total electron energy with a limiting value e= �hc
at E� m0c

2. The line z-path integrals in (7a) at z � t0
define the projected potential and projected in-plane in-
duction, depending only on r�x; y�. Using the definition
B�r; z0� � r�Az�r; z0� we denote these integrals as
tVin �

R
V�r; z0�dz0 and tB�r� �

R
B?�r; z0�dz0 and re-

write Eq. (7a) in a simpler form

r?’�r� � $r?�tVin�r�� �
e
�h
�nz � tB�r��: (7b)

Note that the expression for Lorentz force follows directly
from Eq. (7b) by taking into account that in the non-
relativistic limit $ � e= �hv and z � vz', where v and '
are the electron velocity and time. Indeed, with a Newton
force defined as F? � @'p? the Lorentz force becomes
F? � �h@'k? � �h@'�r?’� � �e�E� vz �B�, assum-
ing E � �r?V. Since both z-path integrals in Eq. (7a)
are finite, the variable t introduced in Eq. (7b) may be
considered as an effective sample thickness when
the electromagnetic fields are localized close to its geo-
metrical volume. For homogeneous magnetic films
(r?Vin � 0) of constant thickness (r?t � 0) the first
electrostatic term in Eqs. (7a) and (7b) (referred to in
light optics as ‘‘refraction’’ [9,15]) can be neglected. The
substitution of the second magnetostatic term from (7b)
into Eq. (6) at z � t0 yields

� �hkz@z
ZZ
D
Ids � e

I
L
ItB � dl: (8)

The loop integral in Eq. (8) converts into a surface
integral using Stoke’s theorem and vector identity r�
�fA� � fr�A�rf�A as

I
L
ItB � dl �

ZZ
D
�Ir� tB�rI � tB�ds: (9)

Since Eqs. (8) and (9) are integrated over the same
surface area D with ds � nzdxdy and unit normal nz,
we directly equate scalar products under the integrals for
the z component by writing the following relation at z �
t0 (area B):

e�Ir� tB�rI � tB�z � � �hkz@I�r; z�=@z: (10)

This new scalar equation makes a relation between
the observable defocused contrast (@I=@z) and the pro-
jected in-plane distribution of magnetic field tB�r� �R
B?�r; z0�dz0, present in magnetic and superconducting

films imaged with electron waves. We call it the magnetic
transport-of-intensity equation with emphasis on the
mechanism of magnetic-phase contrast, which is differ-
ent by its nature from optical refraction studied by TIE.
By rearranging Eq. (10), we obtain an estimate for a film
of constant thickness:
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FIG. 1. Layout of single vortex supercurrent in *-tilted film
(a), explaining the origin of Fresnel contrast; experimental
Fresnel image of vortices (b), and reconstructed phase contours
(c), assuming that contrast in (b) is due to vortex jz-current
density distribution. Below are the results of model calcula-
tions: jz-current components for six vortices at * � �=4 (d)
and inset showing the in-plane current at * � 0; reconstructed
phase (e) and phase contours (f) derived from (d). Part (b) is
reprinted from Ref. [17] with permission from A. Tonomura
and American Institute of Physics.
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��rotB�r��z �
�hkz
et
@I
I@z

� �r lnI � B�r��z �
2�0

t�
@I
I@z

;

(11)

where the second term can be neglected for uniform in-
focus illumination and in many other practical cases.
Indeed, for a typical TEM experiment (U � 300 kV
and t 	 50 nm) the prefactor of the first term in Eq. (11)
measured in tesla is huge, �hkz=jejt � 2�0=t� � 4:136�
104 T (�0 � 2:068� 10�15 Wb is a quantum of mag-
netic flux), compared to the usual jBj � 2:4 T for all
compounds. The value of the in-plane gradient, r? lnI,
in the second term is small (in the absence of strong
diffraction contrast) and usually obeys well the
Bouguer-Lambert absorption law ln�I�t�=I0� � �t=�0

with �0 as a mean-path constant. Hence, in foils and films
of constant thickness (r?t 	 0) and/or far enough from
the sharp sample edges r? lnI 	 0. In practice I�r; z�
�z� measurements of a real object versus ��z can be
replaced with charge-coupled device (CCD) intensity
measurements of the same object imaged in a back image
plane of the TEM as a function of small image defocus
�f � �z [14]. Using Maxwell’s second law rotB �
�0�jmacro � jnano� in solid state (�0: permeability of vac-
uum; jmacro and jnano density of macrocurrents and nano-
currents, respectively) and assuming an aberration-free
Lorentz imaging [13,14], we rewrite Eq. (11):

jz�r� � jmacroz �r� � jnanoz �r� � �
Am
t
�
@I�r; f0�
I@f

(12)

suited for direct defocused imaging (@I=@f) of Z compo-
nents of macrocurrent and nanocurrent density, observed,
respectively, around vortices in superconductors and do-
main walls in magnetic materials. The new law (12) states
that the z mean of the current-density component jz�r� in
a sample, or more strictly z-path integral tjz�r� �R
jz�r; z0�dz0, is proportional to observable relative con-

trast �I�r�=I�r� under the known defocus �f with the
scaling factor Am=�t � �f� measured in A=m2 and new
constant Am � h=�jej�0�� � 4:136� 104=8� A at U �
300 kV. Notice that Eq. (12) is consistent with experi-
mental observations [16], according to which the absolute
contrast (�I) of superconducting vortices is directly pro-
portional to the intensity of the incident beam (I), defocus
(�f), sample thickness (t), and appropriate film tilt angle
(*) as shown in Fig. 1(a). Since the tjz�r� component
of current density in a sample can be measured now by
Eq. (12), a z-path tAz component of vector potential may
be calculated from the Poisson equation r2?

R
Azdz0 �

��0
R
jzdz

0 and, hence, the in-plane induction tB�r� can
be retrieved without exact knowledge of the object phase.
However, to emphasize the relation of a discussed matter
to the magnetic object phase ’m (a subject for the elec-
tron holography) we give another ‘‘phase’’ solution for
Eq. (10) suitable for tB�r� mapping based on the intensity
measurements. Indeed, Eqs. (10) and (11) can be trans-
formed by parts using the inverse relation B�’m� from
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Eq. (7b) as

�r2?’m � kz@z lnI �r?’m � r? lnI; (13)

with a solution given by the integral equation

’m�r� � �r�2
? �kz@z lnI �r?’m � r? lnI�; (14)

where the inverse-Laplacian integral operator r�2
? can be

calculated by any appropriate method. The unique phase
solution of Eqs. (13) and (14) up to some arbitrary con-
stant can be obtained, for example, by the Fourier trans-
form via the symmetrization rule [12]. If the gradient
term in Eqs. (13) and (14) is small, as discussed for
Eq. (11), the approximate solution is obtained in one step,

’m�r� � F�1fF�kz@z lnI�=k2?g; k? � 0; (15)

where F and F�1 define the forward and inverse Fourier
transform operators for image source given in brackets
and k? as frequency vector in Fourier space. The second
small gradient term in Eqs. (10) and (13) can be included
in the refined solution ’m by iterating Eqs. (14) and (15)
with the modified image source in (15) from Eq. (14). The
convergent solution is achieved in one to two iterations
and does not greatly differ from a simple one-step solu-
tion (15). Finally, the projected map is computed from
Eq. (15) as tB�r� � � �h=e��nz �r?’m�. This approach
forms the basis for in-plane projected induction mapping
in magnetic films based on the MTIE concept. For ex-
ample, an induction map computed from a couple of
defocused Fresnel images recorded by CCD with 1024�
1024 pixels size takes 6–8 s of PC-MacG4 computing
043904-3



FIG. 2 (color). Experimental underfocused (a) and over-
focused images (b) of Co islands (30 nm thick) recorded at
external in-plane field Hin � 35 Oe and �f � 100 �m; recon-
structed phase-contrast image (c) and recovered phase (d); the
enlarged images of phase contours, showing the magnetic flux
distribution (e) and computed projected induction map (f) for
the boxed areas in (c) and (d), shown both by color-code and
arrow-vector maps. The inset encodes the vector amplitude and
direction. Large arrows in (f) show the predominant magneti-
zation of Co islands versus Hin.
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time. Generalizations of these results to partially coherent
waves are straightforward [7].

To demonstrate the significance of the new physical
approach by Eqs. (10)–(12) we consider two very differ-
ent phase objects, namely, vortices in superconducting
Nb foil (Fig. 1) and vortex magnetic domains in patterned
polycrystalline Co islands grown on a Si3N4 membrane
(Fig. 2). Indeed, the circulation of vortex current
[Fig. 1(a)] in *-tilted Nb foil with respect to the z-beam
direction will create a minimum (jz 	 0) or maximum
(jz 	 j) of defocused contrast @I=@f [Eq. (12)], respec-
tively, at * � 0 and �=2, in agreement with experiments
[2,17]. Since the projected field of view at * 	 �=2 is
small, the practical compromise is reached at * 	 �=4
[2,3]. Using Eq. (12) we interpret the experimental image
of vortices [17] [Fig. 1(b)] as the z component of super-
current density jz, circulating about each vortex in
*-tilted Nb foil [Fig. 1(a)]. Hence, it becomes possible
to calculate an appropriate phase map [Fig. 1(c)], shown
by cos�n’� fringes for better comparison with available
holographic data [2]. This result agrees well with the z
component of the known solution for vortex supercurrent
j � roth, with local field h defined by the Hankel func-
tionK0�r=�L�, �L-field penetration depth, as follows from
Ginzburg-Landau equations. Our model calculations of jz
current-density [Fig. 1(d)] and reconstructed phase maps
[Figs. 1(e) and 1(f)] via Eqs. (13)–(15) are consistent with
Figs. 1(b) and 1(c) and other experimental data [2,17].
Calculations will be published separately.
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Figure 2 is another example of phase retrieval and
projected induction tB�r� mapping. Underfocused and
overfocused experimental images of slightly magnetized
(by in-plane fieldHin � 35 Oe) Co islands [Figs. 2(a) and
2(b)] were used to construct a phase-contrast (�I=I�f)
image [see Eqs. (10) and (11) and Fig. 2(c)], followed by
the object phase retrieval [Eq. (15), Fig. 2(d)] and map-
ping of phase [Fig. 2(e)] and projected induction
[Fig. 2(f)] for the boxed image area in Figs. 2(c) and
2(d). Notice that the black (white) contrast of vortex spots
in Fig. 2(c), pointing in the �z direction of local
jz-nanocurrent density in Co islands, is consistent with
appropriate curling of in-plane magnetization [Fig. 2(f)]
plotted for clarity both by color vector and arrow-
vector maps.

In conclusion, we presented a theoretical basis for the
MTIE equation, allowing the quantitative analysis of
magnetic-phase contrast of defocused images as observ-
able z components of local currents present, according to
fundamental ideas of Maxwell-Ampere-Landau, around
vortices in superconducting and magnetic films. We also
proposed a simple approach to induction/flux mapping in
magnetic samples based on the intensity measurements of
defocused images.
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