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Statistics of Multiply Scattered Broadband Terahertz Pulses
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We describe the first measurements of the diffusion of broadband single-cycle optical pulses through
a highly scattering medium. Using terahertz time-domain spectroscopy, we measure the electric field of
a multiply scattered wave with a time resolution shorter than one optical cycle. This time-domain
measurement provides information on the statistics of both the amplitude and phase distributions of the
diffusive wave. We develop a theoretical description, suitable for broadband radiation, which adequately
describes the experimental results.
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FIG. 1. A schematic of the diffusion experiment. The detec-
�
field, with a temporal resolution better than one optical

cycle, without the use of interferometric techniques. As a
tor is situated at 90 to the input beam direction, in order to
avoid measuring ballistic terahertz photons.
The propagation of classical waves in the presence of
random scattering is a topic of considerable interest in
many research communities. In particular, scattering of
electromagnetic waves can lead to a rich array of phe-
nomena [1,2]. In a random medium, the propagating field
can be described as a superposition of unscattered and
scattered waves. Diffusive propagation occurs after the
incident wave travels a distance much larger than the
Boltzmann transport mean free path (ltr) [1]. In this
case, the incident light beam is completely randomized,
and only multiply scattered photons are transported
through the medium. This diffusive wave is of much
interest because it can be used for locating and imaging
objects buried in the random medium [3–5]. In addition,
the statistics of the diffusive wave can be used to extract
information on the nature of the random medium [6] and
are a key indicator of the onset of localization [7]. Much
of the research on diffusive optical waves has concen-
trated on the case of monochromatic or narrow-band
waves [3,8–14]. Several authors have used short optical
pulses as a means for separating the diffusive portion of
the wave from the ballistic light [7,15–18]. Others have
used low-coherence interferometry to extract relative
phase information [19–23]. Short acoustic pulse propa-
gation is also extensively studied in the context of seismic
tomography [24]. However, the treatment of the statistics
of broadband fields in random media remains largely
unaddressed.

Here, we report measurements of the electric field of
multiply scattered broadband optical pulses. We compute
the statistics of these random fields and demonstrate the
connections to the case of monochromatic radiation.
These measurements employ terahertz time-domain
spectroscopy (THz-TDS), in a configuration quite similar
to the one described previously [25–27]. Using this tech-
nique, it is possible to generate pulses with a fractional
bandwidth in excess of 100% (50 GHz–1 THz). Further-
more, the coherent measurement of the electric field
permits extraction of both the amplitude and phase of the
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result, one directly observes, among other things, the
distribution of photon transit times (i.e., the path-length
distribution function). This quantity usually must be
extracted from time-integrated measurements using
spatial intensity correlations [14]. Finally, we emphasize
that these measurements have been performed in a
three-dimensional sample, rather than in the waveguide
geometry customarily employed in microwave measure-
ments [28].

The experimental setup is illustrated in Fig. 1. Single-
cycle terahertz pulses are focused into a random medium,
and the emerging radiation is measured at an angle of 90�

with respect to the incident beam direction. This setup
ensures that no ballistic radiation reaches the detector.
The model random medium consists of a large number of
Teflon spheres with a diameter of 0:794� 0:025 mm.
Teflon is an excellent material for these measurements
because of its low absorption and because the refractive
index of Teflon, n � 1:4330, is nearly independent of
frequency throughout the spectral range of the measure-
ments. The spheres are poured into a cubic Teflon cell with
dimensions of �4 cm�3. The volume fraction of the spheres
in the sample cell is measured to be 0:56� 0:04. Our
2003 The American Physical Society 043903-1



P H Y S I C A L R E V I E W L E T T E R S week ending
25 JULY 2003VOLUME 91, NUMBER 4
previous measurements indicate that the mean free path
in these samples ranges from �1 to �70 mm within the
bandwidth of the terahertz pulse [26,27].

Figure 2 shows several representative terahertz wave-
forms. Each waveform corresponds to a realization of a
unique configuration of the random medium. These wave-
forms have been spectrally filtered at both low and high
frequencies to improve the signal to noise, which is about
10:1 at the spectral peak. For reference, the signal to noise
for a measurement of the incident single-cycle pulse
exceeds 20 000 after equivalent spectral filtering. We
measured waveforms for 22 different sample con-
figurations. The result of the multiple scattering is a
randomization of the phase, which produces the complex
structure shown in Fig. 2. By taking the Fourier trans-
form of these waveforms, we can extract both the real
r � Re�E�!�� and the imaginary i � Im�E�!�� parts of
the scattered electric field E�!�. From these measure-
ments, we are able to obtain the probability distribution
of the real and imaginary parts of the transmitted electric
field, P�r� and P�i�.

If we assume that the complex electric field component
at a given frequency is the sum of a large number of
random phasors, then the central limit theorem predicts
that the scattered field should obey Gaussian statistics
[28,29]. Assuming that the phase is uniformly distrib-
uted, the joint probability distribution of the real and
imaginary parts at a given frequency ! can be considered
zero mean, jointly Gaussian variables, and therefore
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FIG. 2. Several typical terahertz waveforms measured using
the setup shown in Fig. 1. Each waveform represents a unique
configuration of the random medium. For reference, the upper
curve shows the single-cycle pulse incident on the random
medium. This curve has been scaled by a factor of 600 and is
shown on a shifted time axis. The bottom curve shows a
measurement with no scatterers in the sample cell, and is
therefore an indication of the noise level. Only the first
200 psec of each waveform is shown, although the measurable
signals extend beyond 600 psec.
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where the variance �!�!�2 � hI�!�i=2. hI�!�i is the
spectral intensity of the diffuse light averaged over all
configurations of the medium, and it is dependent on the
input pulse and the scattering parameters of the random
medium. To determine the joint distribution of the real
and imaginary parts within a finite frequency range
�! � !2 
!1, we integrate (1) over ! and normalize
by the bandwidth �!,
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This expression may be interpreted as the sum of a large
number of zero-mean Gaussian distributions (one for each
spectral component), each with a unique variance propor-
tional to hI�!�i. The marginals P�r� and P�i� are equiva-
lent to each other and can be computed as
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The variance of P�r; i� is proportional to the integrated
average intensity of the diffuse light. This is analogous to
diffuse monochromatic waves where the variance is pro-
portional to the average intensity [28]. We extract the
complex parts of E�!� over the 50–500 GHz spectral
range, where there is an appreciable signal in the mea-
sured waveforms. The probability distributions of the
normalized real and imaginary parts P�r=�� and
P�i=�� are shown in Fig. 3. The real and imaginary parts
are zero mean and have nearly identical distributions as
predicted by (2). As expected, the Gaussian distribution
predicted for the case of monochromatic illumination
[28] (dashed line) does not accurately fit the data. In order
FIG. 3. The probability distribution of the normalized real
(triangles) and imaginary (open squares) parts of the complex
scattered electric field, P�r=�� and P�i=��, plotted on a log
scale. The dashed line shows the Gaussian distribution, which
is the result expected for monochromatic radiation [28]. The
solid curve is the prediction of Eq. (3), using an experimentally
determined estimated for the mean spectral intensity.
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FIG. 4. The probability distribution of the normalized spec-
tral phase derivative �̂�0, plotted on a log scale. The solid line is
the probability distribution given in Eq. (4), equivalent to the
monochromatic case [30], with Q � 0:234.
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to compare to the predicted result [Eq. (3)], we extract an
estimate of the average intensity hÎI�!�i by averaging
the frequency-dependent intensity spectrum over the 22
measured waveforms. By substituting hÎI�!�i for the aver-
age intensity in (3), we can numerically calculate
P�a=��. The result (solid line) is in excellent agreement
with the experimental data.

The statistics of the phase derivative d�=d! � �0 are
also of great importance. In the case of narrow-band
wave packets, the ensemble average of this quantity is
inversely proportional to the transport velocity, so it can
be interpreted as a time delay for photons in the medium.
For broadband waves, its connection to the concept of a
delay time is questionable, because of the randomization
of the spectral phase. Nevertheless, it is instructive to
investigate the statistics of �0, because of its relevance in
the study of higher-order (i.e., C2) correlations [30]. For
narrow-band wave packets, the probability distribution
for the normalized phase derivative has been derived
within the Gaussian approximation as [12,30]
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where �̂�0 is the phase derivative normalized to its
ensemble-averaged mean, and where Q is a parameter
related to the absorption length and the sample geometry
[31]. For broadband waves, P��̂�0� can be derived by in-
tegrating [4] over frequency with an appropriate weight-
ing function, as in Eqs. (2) and (3) above. However,
because in our measurements the absorption length is
approximately constant over the entire bandwidth of the
radiation, Q should not vary much as a function of fre-
quency. Since this is the only parameter, the distribution
of the phase derivative for broadband waves should also
be given by (4). Figure 4 shows the probability distribu-
tion for �̂�0, extracted from the Fourier transforms of the
measured waveforms. The solid curve is the predicted
043903-3
result [Eq. (4)], with Q � 0:234. As anticipated, the
theoretical expression derived for the monochromatic
case can also accurately predict the statistics of the broad-
band wave packet.

In conclusion, we report the first use of terahertz time-
domain spectroscopy in the study of diffuse waves. The
direct measurement of the multiply scattered electric field
allows for the computation of statistics for both amplitude
and phase. We have extended the theoretical framework,
developed for monochromatic waves, to the broadband
case, and found excellent agreement with our measured
results. Using these time-resolved measurement tech-
niques, it should also be possible to extract information
on the nature of specific scattering events within the
random medium.
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