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Holographic Entropy Bound and Local Quantum Field Theory

Ulvi Yurtsever
Quantum Computing Technologies Group, Jet Propulsion Laboratory, California Institute of Technology,

4800 Oak Grove Drive, Pasadena, California 91109-8099, USA
(Received 6 March 2003; published 23 July 2003)
041302-1
I show how the holographic entropy bound can be derived from elementary flat-spacetime quantum
field theory when the total energy of Fock states is constrained gravitationally. This energy constraint
makes the Fock space dimension (whose logarithm is the maximum entropy) finite for both bosons and
fermions. Despite the elementary nature of my analysis, it results in an upper limit on entropy in
remarkable agreement with the holographic bound, and also provides a microscopic deviation of a more
general entropy bound recently introduced by Gour.
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simplified via the standard approximation: entropy) is infinite for bosons unless the number of
An outstanding recent puzzle in gravitational physics is
to find a local, microscopic explanation for the ‘‘holo-
graphic principle’’ [1–3], which asserts that the maxi-
mum entropy that can be stored inside a bounded region
R in 3-space is proportional to the surface area A�R� [as
opposed to the volume V�R�] of the region:

Smax�R� �
kB
4

A�R�

l2p
; (1)

where kB is Boltzmann’s constant, and lp �
��������������
�hG=c3

p
is

the Planck length. The inequality Eq. (1) can only be
saturated when the system inside R is compressed to its
Schwarschild radius (the right-hand side being the
Bekenstein entropy [4] of the resulting black hole). The
holographic relation between Smax and A�R� was first
pointed out by ’t Hooft [5], and also explored by
Bekenstein [6]. The thermodynamic (macroscopic) argu-
ments leading to various similar entropy bounds as well
as to the holographic bound Eq. (1) can be found collec-
tively in the review article cited in [2].

The holographic principle presents a puzzle since deri-
vations based on standard (nongravitational) microphys-
ics yield an entropy bound proportional to the volume
V�R� instead of the surface area. To discuss this in
the simplest microscopic model, let me choose R to be
a standard three-dimensional spacelike cube [7] of size
L in Minkowski space, and consider a real, massless
(linear) scalar field � confined in R. The Fock space is
built out of the modes of the field �, which are the
positive-frequency (complexified) solutions of the sca-
lar wave equation �� � 0 that vanish on @R. These
modes are given (up to normalization) by the solu-
tions sin� ~kk � ~xx�e�i! ~kkt, where !~kk � cj ~kkj, and the admiss-
ible wave vectors ~kk are labeled by non-negative integers
mx, my, mz: �kx; ky; kz� � ��=L��mx;my;mz�. I will often
use single-letter labels i, j, etc. to denote a composite
multi-index such as �mx;my;mz�. Mode counting and
summing various quantities over the modes (and all my
computations below will be of this kind) can often be
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X
~kk

!
1

��=L�3

Z
P�

d3k �
1

c3��=L�3
4�
8

Z
d!!2; (2)

where P� denotes the ‘‘all-positive’’ octant of ~kk space
(consisting of positive kx; ky; kz), and the last simplifica-
tion is available whenever the summed quantity depends
only on the mode frequency ! � cj ~kkj. Consider, for ex-
ample, the total number of modes, N. A natural cutoff at
or near the Planck frequency, ! � 2��=�p, makes N
finite, where Planck time �p � lp=c, and � is a dimen-
sionless constant of order 1 to be specified by a complete
theory of the Planck regime (according to naive Planck-
scale physics, � � 1). The total number of modes,

N �
X
i

1 �
L3

2�2c3

Z 2��=�p

0
!2d! �

4��3

3

�
L
lp

�
3
; (3)

is proportional to the volume V�R� � L3.
The Fock space H F�R� for the theory can be con-

structed as the Hilbert space spanned by orthonormal
basis elements of the form

j�i � jn1; n2; . . . ; ni; . . . ; nNi; nj 2 N; (4)

which denotes a state with ni particles occupying mode i.
With Fermi statistics, each ni is restricted to the values
ni � 0, 1, while with Bose statistics the ni can be arbi-
trarily large integers. The entropy associated to any quan-
tum state of the field is given by S � �kBTr�" log"�,
where " is the density matrix of the state. The state
with the largest possible entropy is the maximally mixed

"max �
1

dimH F�R�
1; (5)

the identity operator normalized by the dimension of the
Fock space H F�R�. It follows that maximum entropy is
proportional to the log-dimension of H F�R�:

Smax ��kBTr�"max log"max� � kB logdimH F�R�: (6)

The Fock-space dimension (and, hence, the maximum
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particles in each mode i is constrained by a finite bound.
Assuming that the ni are so constrained,

ni < D; 8 i (7)

for some fixed integer D, the number of states of the form
Eq. (4) is DN [ � dimH F�R�], and Eqs. (6) and (3) give

Smax � kB�logD�N �
4��3 logD

3
kB
V�R�

l3p
: (8)

For fermions (the case D � 2), the maximum entropy is
proportional to volume. For bosons, we must conclude
either that the entropy is unbounded, or we must regular-
ize it with the occupation-number constraints Eq. (7) in
which case the bound is again proportional to volume.
Even if the constraints D were allowed to depend on the
mode frequency !i, setting D0 � minfDig (D0 � 2), it is
clear that dimH F�R� � DN

0 , and Eqs. (6) and (3) imply

Smax �
4��3 logD0

3
kB
V�R�

l3p
; (9)

still in violent disagreement with the holographic bound
Eq. (1).

Neglecting the small Casimir-effect contribution to the
vacuum stress energy, the regularized total Hamiltonian
for the scalar field � can be written in the form H �R
R :T00:d

3x �
P
i �h!ia

y
i ai, where ayi , ai are the usual

creation and annihilation operators for the mode i. The
total energy of a Fock state of the form Eq. (4) is

h�jHj�i � h�j
X
i

�h!ia
y
i aij�i �

X
i

�h!ini: (10)

Let me now introduce the ansatz that the Hilbert space of
the theory contains only those Fock states j�i for which

h�jHj�i �
X
i

�h!ini < Emax; (11)

where Emax � �c4=G�L is an upper bound on energy which
ensures that the field� is in a stable configuration against
gravitational collapse according to semiclassical Einstein
equations. More precisely: the Fock space H F�R� of the
theory consists of the linear span of the (finitely many)
states of the form Eq. (4) satisfying the constraint Eq.
(11). It is important to note that this ansatz is consistent
with the linear structure of Fock space; any j�i 2
H F�R� obeys the same energy bound: h�jHj�i<
Emax. For if j�i can be written as a linear combination
j�i �

P
*c*j�*i,

P
*jc*j

2 � 1, of the basis states j�*i
satisfying Eq. (11), then, since j�*i are eigenstates of the
Hamiltonian H,

h�jHj�i �
X
*

jc*j
2h�*jHj�*i<

X
*

jc*j
2Emax � Emax:

Introducing the dimensionless frequencies �i and the
dimensionless energy bound B via

�i � �p!i; B �
�p
�h
Emax; (12)
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the ansatz Eq. (11) can be written in the form

X
i

ni�i < B: (13)

The precise value of B will depend on the details of a self-
consistent semiclassical (or fully quantum) theory of
gravity; nevertheless, I will assume that it does not differ
much from the value predicted by the hoop conjecture [9]
applied to the cube R:

B � +

���
3

p

4

L
lp
; (14)

where + is a dimensionless number of order 1. According
to the classical hoop conjecture, + � 1.

What is the dimension of the Fock space constrained as
in Eq. (11)? For both bosons and fermions, the dimension
is equal to the combinatorial quantity,

dimH F�R� � W�B� � number of �n1; n2; . . . ; nN�;

ni 2 N; such that
X
i

ni�i < B; (15)

the cardinality of the space of solutions to Eq. (13) in
non-negative integer N-tuples. With Fermi statistics, the
ni are further constrained by ni 2 f0; 1g; for bosons, there
are no additional constraints. The computation of Smax

now reduces to knowing how to count the quantity W�B�.
First, the computation for bosons, since Bose statistics

clearly leads to the larger dimension: Notice that the
inequality Eq. (13) can be written in the form

~nn � ~��<B; (16)

where the vectors ~nn � �n1; . . . ; nN� and ~�� �
��1; . . . ;�N� live in N-dimensional Euclidean space
RN . Geometrically, the quantity W�B� is the number of
points of the integer lattice ZN which are contained in the
convex subset PN � f ~xx � ~��<B; xi � 0g of RN . PN is a
polyhedral volume in the positive 2Nth sector (xi � 0) of
RN , bounded by the hyperplane f ~xx � ~�� � Bg (see Fig. 1 for
the geometry of PN for N � 3). At first thought, one
might be tempted to conclude thatW�B� is simply propor-
tional to the volume of PN , since each unit cell of the
integer lattice ZN contains on average one lattice point
and has unit volume. It is easy to show that the volume of
a polyhedron P n in Rn whose vertices (the points where
its bounding hyperplane intersects the coordinate axes)
are located at xi � li, i � 1; 2; . . . ; n, is

V�P n� �
1

n!
l1l2 . . . ln: (17)

For PN � f ~xx � ~��<B; xi � 0g, these edge lengths li are

li �
B
�i
: (18)

Using �i�B=�i� � exp
P
i log�B=�i�, V�PN� can be
041302-2



B
Ω1

B
Ω2

B
Ω3

FIG. 1 (color). Example geometry of P 3, with bB=�1c � 4,
bB=�2c � bB=�3c � 3. The boundary of P 3 consists of three
P 2 polyhedra (the right-triangular walls), three edges (P 1s),
and four vertices. Contributing to W�B� are seven points on the
P 2 walls (green dots), seven points on the edges (blue dots),
and four vertices (red dots). There is only one contributing
interior point (not shown); it is located at n1 � n2 � n3 � 1.
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calculated with the help of Eq. (2); asymptotically
�L� lp�,

V�PN� �
1

N!
exp

	
4��3

3

�
L
lp

�
3
logB



: (19)

According to Eqs. (14) and (3) and Stirling’s formula
logN!� N logN � N, V�PN� vanishes exponentially
V�PN� � exp��N log�N=B�� for large L=lp; PN does
not even contain a single lattice point of ZN in its interior.
Solutions of Eq. (13) are distributed skin-deep on the
polyhedron PN; the bulk of the contribution to W�B�
comes from points on the boundary of PN (Fig. 1). This
boundary is comprised of N polyhedra PN�1 of dimen-
sion N � 1, each of which in turn have boundaries made
up of N � 1 PN�2s, and so on. By iterating the reasoning
above inductively to the lower-dimensional components
of this scaffolding which comprises the boundary of PN ,
it is not difficult to show that W�B� can be evaluated as

W�B� � 1� N �
XN
n�1

1

n!
Sn; (20)

where, for 1 � n � N,

Sn �
X

i1<i2<���<in

�li1 � 1��li2 � 1� � � � �lin � 1�: (21)

Here I made use of Eq. (17) to compute the interior
volume of each subpolyhedron P n on the boundary. The
edge lengths lik are reduced by 1 so that only interior
points of P n contribute to W�B�, and overcounting of
points that lie on the boundaries of each P n is avoided.
041302-3
Each sum Sn contains �Nn� summands, resulting in 2N

terms in Eq. (20). How can Eq. (20) be evaluated? The
first key observation is a sequence of elementary algebraic
identities which leads to a recursion relation for Sn. If I set
S0 � 1, and introduce the quantities

Pm �
XN
i�1

�li � 1�m; 1 � m � N; (22)

then this recursion formula for Sn can be written as

Sm �
1

m

Xm
j�1

��1�j�1PjSm�j; 1 � m � N: (23)

The next key observation is that in the regime L=lp � 1,

�P1�
m � Pm; 8 m � 2; . . . ; N: (24)

The proof consists of a straightforward evaluation of the
sums Pm via the integral formula Eq. (2), which gives

P1 � �2

�
L
lp

�
3
B
�
1�

4��
3B

�
: (25)

While for higher m (since lowest ! is �c=L, no true
infrared divergences occur at ! � 0), e.g., for m � 4,

Pm �
4�

m� 3

�
BL
�lp

�
m
: (26)

Comparison of Eq. (25) with Eq. (26) should make
Eq. (24) obvious (see [8] for full details). It follows that
in the recursion formula Eq. (23), the first term of the sum
dominates over all others, proving that asymptotically

Sm �
1

m!
Pm1 ; (27)

and, by Eq. (20) and the asymptotic behavior Eq. (19),

W�B� � N � q�P1�; where q�z� �
X1
n�0

zn

�n!�2
: (28)

To discover the entire analytic function q�z�, notice that it
satisfies the differential equation q;zz � q;z=z� q=z � 0,
whose solutions are Bessel functions of

���
z

p
. Indeed,

q�z� � I0�2
���
z

p
�, the zeroth-order Bessel function of the

second kind [10], with asymptotic behavior as jzj ! 1:

I0�z� �
ez���������
2�z

p

	
1�

1

8z
�O

�
1

z2

�

: (29)

Finally, combining Eqs. (28) and (25),

W�B� � N � I0

	
2�

�
BL3

l3p

�
1=2



; (30)

and Eqs. (14) and (29) gives, asymptotically,

Smax � kB logW�B� � kB31=4�
����
+

p
�
L
lp

�
2
; (31)

which [11] is in full agreement with the holographic
041302-3
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bound Eq. (1) if �
����
+

p
� 33=4=2 � 1:14 [note:

A�R� � 6L2].
If the energy boundB is kept general in Eq. (30) instead

of substituting from Eq. (14), the asymptotic behavior
Eq. (29) leads to the general entropy bound [7]

S < Smax�B;L� � kB2�
�
BL3

l3p

�
1=2
; (32)

which is precisely the bound recently discovered by
Gour [12] via macroscopic thermodynamic arguments
[cf. Equation (17) of [12]].

With Fermi statistics, the computation of W�B� in-
volves a different but more straightforward approach,
relying on a probabilistic analysis of the distribution of
energy over the 2N subsets (which label the fermionic
states) of the set of all modes. The result is

Smax � kB
2

3��
B
	
1� log

�
3��
2

N
B

�

; (33)

i.e., Smax is proportional to �L=lp� log�L=lp�. The full
derivation and a discussion of the physical significance
of Eq. (33) will be given in [8].

The ansatz Eq. (11) does lead to the correct holographic
entropy bound, but how seriously should it be taken? Here
are some of the possible consequences of taking Eq. (11)
dead seriously as a fundamental physical law.

The commutation relations (CCR) for Bose statistics

�ai; a
y
j � � 0ij1 (34)

are incompatible with a finite-dimensional Fock space, as
can be readily seen by taking the trace of both sides of
Eq. (34) [the result is 0 � 0ijdimH F�R�]. Indeed, ac-
cording to the ansatz Eq. (13), whether they obey the
Bose CCR or the Fermi CAR, the operators ayi must
satisfy the algebraic relations

�N
i�1�a

y
i �
ni � 0 whenever

XN
i�1

ni�i � B; (35)

which imply an algebraic structure drastically different
from the CCR (or CAR). One possible way to specify the
new algebra (for bosons) is to impose Eq. (35) along with

�ai; a
y
j � � 0ij1� Cij; (36)

where Cij are operators which satisfy TrCij � �0ijW�B�
and whose matrix elements h�jCijj�0i � 0 for low-
energy states j�i; j�0i. How can this construction be
carried out uniquely, and what are the consequences of
the new algebra for physically observable quantities such
as expectation values of the stress-energy tensor?

An immediate consequence of Eqs. (35) and (36) is the
breakdown of Lorentz invariance at scales much earlier
than Planck; namely, at a new temperature scale

kBTc �
�hc��������
Llp

p : (37)
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For a region R of size �L, Tc is that temperature at which
massless bosons confined in R have sufficient thermal
energy for gravitational collapse [13]. Relative to the
characteristic temperature kBT � �hc=L, Tc corresponds

to Lorentz boosts (blueshifts) or order 3� z�
����������
L=lp

q
,

whereas the Planck temperature kBTp � �hc=lp corre-
sponds to (much larger) boosts of order 3� z� L=lp.
For feature sizes L at the subnucleon scales, the tempera-
ture Eq. (37) is reachable via Lorentz boosts that lie only a
few orders of magnitude beyond those envisioned in the
large hadron colliders currently under construction [14].
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