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DNA Dynamics in a Microchannel
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An extended Brownian dynamics simulation method is used to characterize the dynamics of long
DNA molecules flowing in microchannels. The relaxation time increases due to confinement in
agreement with scaling predictions. During flow the molecules migrate toward the channel center
line, and thereby segregate according to molecular weight. Capturing these effects requires the detailed
incorporation of solvent flow in the simulation method, demonstrating the importance of hydro-
dynamic effects in the dynamics of confined macromolecules.
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matic role in the dynamics of confined polymer solutions,
especially under flow, and their correct treatment is es-

�1��ij�� �ri�rj� [7,22]. A number of groups have
incorporated HI at this level of description into
Emerging technologies for single-molecule analysis of
DNA in micron and nanometer scale devices (e.g., [1–6])
have fueled considerable interest in the structure and
dynamics of solutions of DNA in confined geometries.
Predictive methods capable of describing the conforma-
tion and motion of polymer chains in micro- and nano-
fluidic geometries would be of considerable significance
for the conception and design of such devices. The longest
time scales of interest for confined solutions of DNA are
accessible to coarse-grained, Langevin models [7,8]. The
central challenge is to consider polymer and solvent mo-
tion simultaneously and self-consistently, with the solvent
motion satisfying the no-slip boundary condition on the
surfaces of the confining geometry. In this Letter, we
develop a computationally tractable formalism to address
this challenge, and use it to generate the first predictions
of the dynamics of long (> 1�m) DNA molecules flow-
ing in channels of micrometer dimensions. In particular,
hydrodynamic interactions in confined, flowing systems
are shown to give rise to a pronounced, molecular-weight-
dependent depletion layer, thereby providing a basis for
separation processes for DNA.

The equilibrium properties of polymer molecules in
confined solutions have been studied extensively [9,10].
Their dynamics, both at equilibrium and under flow, have
also been the subject of a considerable amount of research
[11]. Nevertheless, previous computational studies of the
dynamics of long, flexible polymer molecules in confined
geometries have either ignored hydrodynamic interac-
tions between polymer segments, or have considered these
in a highly approximate manner (see, e.g., [12]). Even
simple scaling arguments, however, show the limitations
of these studies. Because of hydrodynamic screening by
the walls [13], Rouse rather than Zimm scaling is ex-
pected for the chain diffusivity [17], a result supported by
analyses with equilibrium-preaveraged hydrodynamic
interactions [18,19]. More importantly, as shown in this
Letter, fluctuating hydrodynamic interactions play a dra-
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sential to capture much of the physics relevant to descrip-
tions of microfluidic systems.

In the present Letter, we extend to the microchannel
situation a coarse-grained molecular model and simula-
tion method that we have previously shown to provide an
accurate representation of experimental data for DNA in
bulk solution [20,21]. In that model, a dissolved double-
stranded DNA molecule is represented by Nb interaction
sites (beads) connected through Ns � Nb � 1 entropic
connectors (springs). A force balance on this chain leads
to a stochastic differential equation
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where kB is Boltzmann’s constant, T is absolute tempera-
ture, and D � B �BT is the diffusion tensor, described
below. The vector R contains the Nb positions, ri, of the
interaction sites; subscript i denotes a specific site. The
vector F contains the non-Brownian, nonhydrodynamic
forces fi acting on each site. The vector Ui � v�ri� is the
unperturbed velocity field (i.e., the velocity field in the
absence of the polymer) at site i. The components of dW
are obtained from a real-valued Gaussian distribution
with mean zero and variance dt.

As it moves, a segment of the macromolecule exerts
a force on the solvent, which creates a velocity field that
in turn affects the motion of the entire macromolecule. In
an unbounded domain, the Stokes flow velocity field
due to a point force f located at xj is given by v0OB�x� �
�OB�x� xj� � f�xj�, where �OB is the free-space Green’s
function, or Oseen-Burgers tensor [7,15]. These hydro-
dynamic interactions (HI) enter the chain dynamics
through the 3Nb 	 3Nb diffusion tensor, D, where

D ij � kBT
�6��a��1I�ij ��ij�: (2)

Here � is the solvent viscosity and a is the bead hy-
drodynamic radius. In an unbounded fluid, �ij�
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FIG. 1. Scaled stretch (a) and relaxation time (b) for DNA
of various lengths. Symbols correspond to L � 4:2 �m (�),
L � 10:5 �m (�), L � 21 �m (�), L � 42 �m (4), L �
84 �m (�), L � 126 �m ( 5 ), L � 210 �m (�), and L �
420 �m (+).
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Brownian dynamics studies of unconfined chains
[20,21,24–29].

Recent work has provided experimental validation of
the use of point-particle hydrodynamics to describe the
motion of a pair of Brownian particles near a surface [30].
In view of those findings, we assume that the point-
particle hydrodynamic formalism just described can
continue to be used to study the confined motion of a
chain in solution. In a general flow domain, the velocity
perturbation v0�x� due to a point force f acting at xj is
given as

v 0�x;xj� � v0OB�x� xj� � v0W�x;xj�: (3)

Here v0W�x;xj� � �W�xi;xj� � f�xj� is the solution to an
incompressible Stokes flow problem subject to v0OB �
v0W � 0 at the walls. We solve this problem numerically
with a finite element method, determining �W�xi;xj� at a
grid of points xj [31]. Then, �ij in Eq. (2) is given by

� ij � �1� �ij��OB�ri � rj� ��W�ri; rj�: (4)

During a Brownian dynamics simulation, �W
ij and

its divergence are obtained by finite element inter-
polation [32].

The model is completed by specification of the spring
and excluded volume forces. (We consider the high ionic
strength case where electrostatic interactions are screened
out.) For the spring we use the wormlike spring (WLS)
model [33] used in many bulk studies of DNA dynamics
[19,21,33–38]. As in our earlier work [19,21], a Gaussian
excluded volume potential between any two sites of the
chain is used [39].

Using Ns � 10 (Nk;s � 19:8) for 21 �m stained
�-phage DNA at room temperature, in previous work
[21] we determined, by direct comparison to available
bulk experimental data, that suitable parameter values are
Kuhn length bk � 0:106 �m [32], bead hydrodynamic
radius a � 0:077 �m, and excluded volume parameter
v � 0:0012 �m3 [38]. With these values, the model re-
produces the experimentally observed bulk relaxation
time, diffusivity, and equilibrium coil size. It also gives
results in quantitative agreement with transient and
steady-state behavior of 21 �m DNA in both simple shear
and planar extension over a wide range of strain rates. The
model also agrees with experimental diffusivity data for
chains ranging from 21 to 126 �m, underscoring its
predictive capability. Therefore, after appropriate modi-
fications to the hydrodynamics, as described above, the
model should provide useful predictions of DNA behavior
in microfluidic devices, particularly in the limits Ns � 1
and H � a, where H is a characteristic dimension of the
device.

In this Letter, we consider the behavior of individ-
ual DNA molecules, at room temperature in a 1 cP sol-
vent, in an infinitely long microchannel with square cross
section. The center line of the channel is oriented along
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the x axis, with the cross section lying in the yz plane.
A simple bead-wall repulsive potential confines the chain
within the channel [40]. Molecules ranging from 4:2 �m
(Ns � 2) to 420 �m (Ns � 200) were simulated in chan-
nels having widths H of 0:636 to 21:2 �m. We define the
‘‘stretch’’ X of a chain as the absolute length of the
molecule in the x direction. The longest relaxation time
�1 is calculated by allowing an ensemble of chains that
are initially fully stretched along the center line of the
channel to relax to equilibrium; the tail of the relaxation
curve of hX2i is fit to an exponential. (h i denotes ensemble
average.) The (ensemble average) radius of gyration is
denoted by S. The subscript b on a quantity denotes that it
is evaluated in the bulk.

Figure 1(a) shows the dimensionless equilibrium
stretch, X� � hXieq=hXib, as a function of the inverse
dimensionless channel width, 1=H� � Sb=H. Simple
scaling arguments [9] and Monte Carlo simulations [10]
give hXi / NkH�2=3 for a chain in a good solvent. Our
results are consistent with this scaling, and show that the
transition from bulk to confined behavior is fairly sharp,
and centered about the point 1=H� � 0:4.

Unlike static equilibrium properties such as stretch,
dynamic properties such as relaxation time are affected
by hydrodynamic interactions, as are transient pro-
cesses like the dynamics of a chain in flow. Figure 1(b)
shows the reduced relaxation time, ��

1 � �1=�1;b as a
function of 1=H� for chains up to 126 �m. We ob-
serve a crossover region centered about 1=H� � 0:1 fol-
lowed by a power law region which is fully developed at
1=H� � 0:5. A scaling theory [17] puts the power law
exponent at 1/3, which agrees well with our results. In
contrast, if hydrodynamic interactions with the wall
038102-2
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FIG. 2. Scaled steady-state stretch as a function of channel
width for chains lengths of 42 �m (white) , 84 �m (gray), and
126 �m (black). Symbols types represent values of _�� �
3:98 s�1 (�), _�� � 30:8 s�1 (�), _�� � 308 s�1 (�).

FIG. 3 (color online). Steady-state center-of-mass probabil-
ity distribution vs cross-sectional position in the channel
for 42 �m chains in 10:6 �m wide channels, Sb=H � 0:11.
(a) _�� � 0 s�1, (b) _�� � 308 s�1.
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FIG. 4 (color online). Axial distance traveled by individual
chains versus axial distance traveled by a fluid element at the
center line of the channel. Results are for a 10:6 �m channel at
a flow strength of _�� � 308 s�1. Top to bottom bands correspond
to 84, 42, 21, and 10:5 �m chains, respectively. Twenty tra-
jectories from each molecular weight are shown.
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are neglected, the relaxation time is unaffected by chan-
nel size.

Bakajin et. al [41], in qualitative experiments with
�74 �m DNA chains confined to a slit, estimated that
the relaxation time roughly doubled when the slit width
was decreased from 5 to 0:3 �m, and again when it was
decreased to 0:09 �m. We estimate Sb � 1:6 �m for
74 �m chains, which puts their data into the confined
scaling regime (the exponents for slit and channel are
expected to be the same), and their data is consistent with
the H��1=3 dependence.

We turn now to the single-molecule dynamics in a
pressure-driven flow. The flow strength is characterized
by an effective shear rate, _�� � 2vmax=H, where vmax is
the imposed velocity at the center line of the channel (in
the absence of a DNA molecule). Figure 2 shows the
steady-state stretch as a function of H (scaled with its
equilibrium value at the same H) for various chain
lengths and flow strengths. At small H, the chain is cigar
shaped at equilibrium. The first effect of the flow is to
compress the chain slightly in the axial direction. As the
confinement decreases, a channel size is reached where
the flow strength is sufficient to stretch the chain away
from its equilibrium value. A simple ‘‘blob’’ picture
(cf. [9,17,42]) predicts that the chain will begin to stretch
at a critical shear rate _��c � ��1

blob, where �blob is the blob
longest relaxation time, which depends onH but not chain
length. This prediction is in good agreement with the
simulation results of Fig. 2.

At equilibrium, or when �blob _�� � 1, a molecule uni-
formly samples the entire cross section of the channel,
aside from the obvious static depletion layer near the
wall. Once �blob _�� * 1 and the chains begin to stretch, a
quite dramatic dynamic depletion layer can form. Figure 3
shows a sample cross-sectional center of mass distribu-
tion. Figure 4 shows the distance traveled by DNA mole-
038102-3
cules of various lengths through the channel: the longer
the chain, the more pronounced the localization to the
center line. Distinct ‘‘bands’’ can be observed for DNA
chains of 10:5, 21, 42, and 84�m, indicating that this
phenomenon might be used to separate DNA molecules in
small channels.

Migration of macromolecules and deformable particles
away from walls in flow fields with nonuniform velocity
gradient is a well-known phenomenon [11,43]. No pre-
vious theoretical study, however, has addressed the im-
portance of confinement for this phenomenon — we find
that at the scales studied here, the hydrodynamic effect of
confinement dominates. If the wall contribution �W to
the diffusion tensor is turned off, the migration effect is
much weaker, and is toward the wall. If hydrodynamic
interactions are turned off entirely, there is no migration
at all. A detailed examination and mechanism of this
phenomenon will be presented elsewhere.
038102-3
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In this Letter we have presented a computationally
tractable formalism for Brownian dynamics studies of
dissolved polymers in confined geometries. We have
confirmed equilibrium scaling predictions and estab-
lished the importance of hydrodynamic confinement in
the migration of polymer chains under flow. To the best of
our knowledge, the hydrodynamic confinement effects
put forth here have not previously been quantitatively
predicted or studied experimentally. We hope that the
availability of these detailed results will stimulate quan-
titative experiments aimed at verifying the predictions of
this Letter.
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