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Dispersion Energy from Density-Functional Theory Description of Monomers
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A method is proposed for calculations of dispersion energy at finite intermonomer separations. It uses
a generalized Casimir-Polder formula evaluated with dynamic density susceptibilities provided by
time-dependent density-functional theory. The method recovers the dispersion energies of He, Ne, and
H2O dimers to within 3% or better. Since the computational effort of the new algorithm scales
approximately as the third power of system size, the method is much more efficient than standard wave-
function methods capable of predicting the dispersion energy at a similarly high level of accuracy.
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stem from an incorrect asymptotic behavior of ex-
change-correlation potentials (see also Ref. [6]). Upon

values of HX. This expression can be expanded in powers
of W as E�2� �

P
1 E�2j� . We will also use notation
Density functional theory (DFT) has become the most
frequently used method in electronic structure calcula-
tions. This method fails, however, when used in the super-
molecular approach to compute interaction potentials
for systems where dispersion is a significant component.
Thus, DFT is not appropriate for studies of intermolecular
interactions except for the cases of strongly, electrostati-
cally bound systems. This significantly restricts the size
of systems that can be investigated by theory since wave-
function methods capable of describing dispersion prop-
erly are computationally much more demanding than
DFT. Numerous papers have been devoted to this problem
and the reader is sent to Ref. [1] for a review and a
quantitative analysis.

Symmetry-adapted perturbation theory (SAPT) [2]
provides both the conceptual framework and the compu-
tational techniques for describing intermolecular interac-
tions, including the dispersion energy. However, the
computer resources required by SAPT and other methods
with high-level treatment of electron correlation—like
many-body perturbation theory at the fourth-order level
or the coupled-cluster approaches [3]—make applica-
tions to monomers with more than about ten atoms not
practical at the present time. Williams and Chabalowski
[4] have proposed a perturbational approach where the
interaction energies are obtained using only the lowest-
order, computationally least demanding SAPT expres-
sions, but replacing the Hartree-Fock (HF) orbitals and
orbital energies by the Kohn-Sham (KS) counterparts.We
will refer to this approach as SAPT(KS). For medium-
size monomers, SAPT(KS) is about 3 orders of magnitude
faster than the regular SAPT with high-order treatment
of electron correlation. However, the accuracy of the
SAPT(KS) predictions was found to be disappointing
[4] even for the electrostatic energy which is potentially
exact in this approach. In a recent Letter, two of us have
demonstrated [5] that some deficiencies of SAPT(KS)
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applying an asymptotic correction in monomer DFT cal-
culations, the SAPT(KS) approach was not only able to
accurately recover the electrostatic energy, but also the
first-order exchange and second-order induction and ex-
change-induction energies. For example, for He2 the sum
of these corrections has been recovered with errors of 2–
5% (relative to the nearly exact values from Ref. [7]) for a
range of functionals. Dispersion was reproduced less ac-
curately, with errors of 5–17% for the same functionals.
For other systems, the deviations of SAPT(KS) dispersion
energies from benchmark results are still larger (12–16%
for neon, 19–22% for water, and 33–37% for carbon
dioxide dimers [8]), too large to enable computations of
quantitatively correct potentials.

In the present Letter we propose a new method for
computing the dispersion energy that utilizes frequency-
dependent density susceptibilities (FDDS’s) predicted by
time-dependent DFT in an expression which is a general-
ization of the asymptotic Casimir-Polder formula. This
generalization was derived by Longuet-Higgins [9],
Dmitriev and Peinel [10], and McWeeny [11] and applied
with coupled Hartree-Fock (CHF) FDDS’s (polarization
propagators) by Jaszunski and McWeeny [12] and by
Knowles and Meath [13].

To define the dispersion interaction, we use the
following partitioning of the total Hamiltonian:
H � HA �HB � V � F� V �W, where HX is the
Hamiltonian for monomer X � A or B, V is the intermo-
lecular interaction operator, F � FA � FB is the sum of
the Fock operators for monomers A andB, andW � HA �
HB � F is the intramonomer correlation operator. The
dispersion energy of the second order in V is then given by
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where 
X
i and EXi are the exact eigenfunctions and eigen-
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disp. The dispersion energy at

the E�2�
disp�2� level is available in the current version of the

SAPT code [14]. For a dimer consisting of identical
molecules, the computational cost of this quantity scales
roughly as n3on4v where no and nv are, respectively, the
numbers of occupied and virtual orbitals in a monomer
[15]. The dispersion energy can also be computed with
selected intramonomer correlation effects summed up to
infinity, see Refs. [16–18].

The exact dispersion energy as defined by Eq. (1) can be
represented by the alternative formula [9–11]
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is the FDDS of monomer X computed at frequency!. The
symbol �̂��r� stands here for the electronic density opera-
tor �̂��r� �

P
i��r� ri�, the summation extending over all

electrons of the considered molecule. For real !,
��r; r0 j !� describes the linear change of electronic den-
sity at r under the influence a one-electron perturbation
localized at r0 and oscillating with frequency !. FDDS’s
are closely related to the dynamic polarizabilities, e.g.,
�xy�!� �

RR
��r; r0 j !�xy0drdr0. It should be stressed

that the dispersion energy expressions, Eqs. (1) and (2),
account not only for the asymptotic dipole-dipole (1=R6)
term but also include the effects of all higher instanta-
neous multipoles as well as the short-range contributions
resulting from the overlap of monomer charge distribu-
tions [2,11]. Therefore, these expressions are valid for
finite intermolecular distances (including the repulsive
part of the potential).

If the wave functions 
X
0 in Eq. (3) are replaced by

appropriate HF determinants, 
X
m by singly excited HF

determinants, and the differences EXm � EX0 by the corre-
sponding excitation energies, one obtains the uncoupled
Hartree-Fock (UCHF) FDDSs and the corresponding
expression for dispersion energy reduces to E�20�

disp. With
CHF FDDSs, the so-called ‘‘random-phase approxima-
tion’’ (RPA) dispersion energy is obtained [17]. An
obvious other option is to use FDDS computed using
time-dependent DFT. We will use the name coupled KS
(CKS) dispersion energy for the quantity obtained in
this way.

The FDDS’s of the CHF or DFT theory can be ex-
pressed in the form
033201-2
��r; r0j!� �
X
ar;a0r0

Car;a0r0 �!�

� a�r� r�r� a0 �r0� r0 �r0�; (4)

where  a�r� [ r�r�] are occupied (virtual) orbitals. The
coefficients Car;a0r0 �!� are closely related to those appear-
ing in expressions for CHF or DFT frequency-dependent
polarizabilities [19,20]. A computationally convenient
formula for these coefficients is

Car;a0r0 �!� � �f�H�2�H�1� �!2I��1H�2�gar;a0r0 ; (5)

where I is the unit matrix and the matrices H�1� and H�2�,
written explicitly in Ref. [20], are built from orbital
energies and two-electron integrals for the CHF case,
whereas in the DFT case the matrix elements contain
also integrals of the functional derivative of the
exchange-correlation potential. We have neglected the
terms involving current densities.

If the CHF or DFT FDDSs are substituted in Eq. (2),
one obtains the following expression
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where vaa
0

rr0 are electron repulsion integrals. The number of
arithmetic operations needed to compute this expression
scales as n3on3vI, where I is the number of integration
points. This scaling and the need to perform a partial
four-index transformation makes such a straightforward
approach much more time consuming than the conven-
tional DFT calculations. However, the evaluation of for-
mula (6) can be sped up by orders of magnitude if
products of orbitals are replaced by expansions in terms
of some one-electron basis. In fact, for a given !,
�X�r; r0j!� is a function of r and r0 and can always be
written as an expansion into binary products of orbitals

�X�r; r0j!� �
X
kl

CXkl�!�$
X
k �r�$

X
l �r

0�; (7)

where $Xk �r�, k � 1; 2; . . . ; nX, is some appropriate set of
primitive one-electron functions for monomer X.
Expression (3) then takes the form
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where Jkk0 are the Coulomb integrals

Jkk0 �
ZZ $Ak �r�$Bk0 �r0�

jr� r0j
drdr0: (9)

Evaluation of dispersion energies is now reduced to a
multiplication of the nX � nX matrices formed by the
coefficients CAkl�!�, C

B
k0l0 �!�, and the Coulomb integrals

Jkk0 . If nA > nB, the cost of computation scales as n2AnBI.
Fitting of products of orbitals has recently been quite
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broadly used in electronic structure calculations, see, e.g.,
Ref. [21]. The experience of these papers shows that nX
can be chosen small compared to nonv without any sig-
nificant reduction of accuracy in the computed quantities.
Thus, the cost of computing the CKS dispersion energies
scales comparably to standard DFT calculations.

The DFT calculations for monomers were done with
CADPAC [22] using the functionals B97-2 [23,24], PBE0
[25,26], and HCTH407 [27,28]. The asymptotic correc-
tion (AC) of the Fermi-Amaldi form was applied as
prescribed by Tozer and Handy [29]. All results have
been converged with respect to quadrature grids used in
the DFT calculations and in Eq. (8). In the latter case,
I � 8 was sufficient. For He2 we have used dimer-
centered ‘‘plus’’ form of basis sets (for consistency with
Ref. [5]), whereas for the two other systems monomer-
centered plus form [30]. All CHF and CKS calculations
utilized Cartesian functions, whereas standard SAPT and
SAPT(KS) utilized spherical functions except for He2.

The results for He2, Ne2, and �H2O�2 presented in
Tables I, II, and III, respectively, demonstrate the remark-
able accuracy that can be achieved by the CKS method
with AC. This method recovers benchmark dispersion
energies with absolute errors from 0.4 to 3.2% for the
range of systems and functionals considered. The per-
formance of the functionals improves in the order:
HCTH407, PBE0, B97-2. The asymptotic correction in-
creases the accuracy in all cases, sometimes by an order of
magnitude, except for the water dimer. In all cases the
CKS/AC method performs significantly better than
SAPT(KS)/AC: for Ne2 and �H2O�2 by about an order of
magnitude.
TABLE I. SAPT, SAPT(KS), CHF, and CKS dispersion en-
ergies (in kelvins) for He2 computed at R � 5:6 bohrs using the
basis Dc147 of Ref. [7]. The benchmark results, obtained by
SAPT employing various orbital and geminal basis sets [7], are
expected to be accurate to 0.01 K.a,b,c.

SAPT(KS) CKS
Method SAPT no AC AC no AC AC

Bchmrk E�20�
disp �17:17

Bchmrk E�2�
disp �22:39

E�20�
disp �17:07

E�2�
disp�2� �21:36 ( � 4:6)
CHF �20:93 (6.5)

HCTH407 �30:77d
�25:79d

�27:65 �23:05
(37.4) (15.2) (23.5) (2.9)

B97-2 �25:50 �23:05 �25:13 �22:62
(13.9) (2.9) (12.2) (1.0)

PBE0 �25:89 �23:36 �25:55 �22:94
(15.6) (4.3) (14.1) (2.5)

aThe DFT results are for ‘‘very high’’ grid numerical integra-
tion [22]. ‘‘High’’ and ‘‘extreme’’ options give negligible
differences.
bSplicing constants c1 � 3:0 and c2 � 4:0 in AC.
cPercentage errors (in parentheses) are relative to benchmark
E�2�
disp.dReference [5].
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The performance of the CKS method can be contrasted
with the performance of the standard SAPT in the same
basis set. This comparison is fully meaningful only for
He2 and in this case the respective errors are 1.0–2.9% vs
4.6%. For Ne2 and �H2O�2, the benchmark and the stan-
dard SAPT results are close to each other as these differ
only by the basis set size. Judging from He2 results, one
cannot exclude that the CKS results are closer to exact
dispersion energies than the standard SAPT results. This
may explain why for water the application of AC appar-
ently does not improve accuracy for some functionals.
However, the role of AC is small for �H2O�2 due to the
relatively short intramonomer distance.

The highly accurate dispersion energies computed us-
ing the CKS/AC method confirm the significant predict-
ability of recently developed density functionals. One
could have anticipated the results obtained by us based
on published CKS calculations (see, e.g., Ref. [32]) of
static polarizabilities which often can reproduce known
accurate values to a better accuracy than high-level
coupled-cluster methods. Assessment of accuracy is
more difficult for dynamic polarizabilities, nevertheless
CKS results from Ref. [33] appear to be rather accurate.
As discussed earlier, these quantities are closely related to
FDDS functions determining the dispersion energy.

In summary, we have shown that highly accurate dis-
persion energies can be computed from asymptotically
corrected DFT FDDS at a cost comparable to regular
DFT calculations. This high accuracy observed here for
equilibrium configurations holds for the whole range of
intermolecular separations (to be published). The method
therefore provides the currently most accurate approach
for practical calculations of dispersion interactions for
TABLE II. SAPT, SAPT(KS), CHF, and CKS dispersion en-
ergies (in cm�1) for Ne2 at R � 3:1 �A. The basis set used for
the benchmark calculations was aug-cc-pV5Z [31] plus a set of
�3s2p1d1f� bond functions from Ref. [7]. All other calculations
used a smaller, daug-cc-pVTZ set with the same bond func-
tions.a,b,c

SAPT(KS) CKS
Method SAPT no AC AC no AC AC

Bchmrk E�20�
disp �46:46

Bchmrk E�2�
disp�2� �58:32

E�20�
disp �46:30

E�2�
disp�2� �59:04 (1.2)
CHF �50:10 (14.1)

HCTH407 �83:18 �73:37 �68:65 �60:18
(42.6) (25.8) (17.7) (3.2)

B97-2 �70:16 �65:47 �62:97 �58:53
(20.3) (12.3) (8.0) (0.4)

PBE0 �71:12 �66:67 �63:83 �59:60
(21.9) (14.3) (9.4) (2.2)

aSee footnote a in Table I.
bSee footnote b in Table I.
cPercentage errors (in parentheses) are relative to benchmark
E�2�
disp�2�.

033201-3



TABLE III. SAPT, SAPT(KS), CHF, and CKS dispersion
energies (in kcal=mol) for water dimer at a near equilibrium
configuration (monomers in vibrationally averaged geometry,
dimer in Cs symmetry, center of mass distance of 3 �A, non-
linearity of hydrogen bond of 8:5�, and the angle of the
acceptor bisector with the vector joining centers of mass of
129:3�). The basis set used for benchmarks was aug-cc-pVQZ
[31], whereas for all calculations it was aug-cc-pVTZ plus (in
both cases) a set of �3s2p1d� bond functions from Ref. [30]a,b,c.

SAPT(KS) CKS
Method SAPT no AC AC no AC AC

Bchmrk E�20�
disp �2:131

Bchmrk E�2�
disp�2� �2:472

E�20�
disp �2:111

E�2�
disp�2� �2:472 (0.0)
CHF �2:184 ( � 11:7)

HCTH407 �3:718 �3:448 �2:608 �2:433
(50.4) (39.5) (5.5) ( � 1:6)

B97-2 �3:125 �3:032 �2:484 �2:414
(26.4) (22.7) (0.5) ( � 2:3)

PBE0 �3:112 �3:028 �2:480 �2:417
(25.9) (22.5) (0.3) ( � 2:2)

aSee footnote a in Table I.
bSee footnote b in Table I.
cPercentage errors (in parentheses) are relative to benchmark
E�2�
disp�2�.
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large monomers, possibly containing as many as 20
atoms. This will bring important biophysical applications
within reach (e.g., interactions involving DNA bases,
small polypeptides, and sugars). When the present work
was nearly completed, a paper by Hesselmann and Jansen
[34] appeared that presented results of calculations with a
somewhat similar approach.

This research was supported by the NSF Grants
No. CHE-9982134/0239611. We are grateful to Professor
Giacinto Scoles and Dr. Cary Chabalowski for numerous
discussions of this subject.
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