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The positivity of the integrand of certain Euclidean space functional integrals for two flavor QCD
with degenerate quark masses implies that the free energy per unit volume for QCD with a baryon
chemical potential �B (and zero isospin chemical potential) is greater than the free energy with an
isospin chemical potential �I � �2�B=Nc� (and zero baryon chemical potential). The same result
applies to QCD with any number of heavy flavors in addition to the two light flavors so long as the
chemical potential is understood as applying to the light quark contributions to the baryon number. This
relation implies a bound on the nucleon mass: there exists a particle X in QCD (presumably the pion)
such that MN � �Nc mX=2 IX� where mX is the mass of the particle and IX is its isospin.
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Euclidean space functional integral over gauge field con- recent interest in QCD at finite baryon density [7].
Quantum chromodynamics (QCD) is the theory under-
lying strong interactions. The theory is not analytically
tractable via perturbative and other weak coupling meth-
ods except for a limited set of observables in a limited
kinematic regime. While certain aspects of the nonper-
turbative regime of QCD have been explored via lattice
QCD [1], it is important to establish as many properties of
QCD as possible via rigorous analytic means. QCD in-
equalities represent an ideal method to do this. An early
variant of the approach was based on a demonstration
by Nussinov [2] that bounds could be placed on hadronic
quantities in a wide class of models inspired by QCD.
The approach was greatly strengthened by the realization
of Weingarten [3] and Witten [4] that similar bounds
could be obtained directly from QCD itself through in-
equalities based on Eulcidean space functional integral
representations of physical quantities. Thus, the approach
is a method to deduce certain qualitative features of QCD
from first principles. While the resulting inequalities have
not been proved as theorems at the level of rigor de-
manded by mathematicians, they make use of only the
most standard assumptions made by physicists. For ex-
ample, one assumes that the theory exists, that physical
quantities may be represented via functional integrals,
that a Wick rotation from Minkowski space to
Euclidean space is innocuous and so on. The field of
QCD inequalities is now two decades old; the state of
the art is presented in a recent comprehensive review by
Nussinov and Lampert [5]. Although the results of QCD
inequalities are qualitative, they can serve to supplement
understanding gleaned from lattice QCD studies; they
provide an analytic means of understanding some of the
results of QCD which are both seen in nature and which
emerge from numerical studies on the lattice. QCD in-
equalities may also provide insight into certain properties
of QCD which are not tractable on the lattice using Monte
Carlo algorithms.

The underlying idea of QCD inequalities is quite
simple. One relates a physical quantity of interest to a
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figurations. If a second quantity can be represented via a
functional integral for which the integrand is greater than
or equal to the integrand of the initial quantity for all
gauge configurations, then one can conclude that the
second functional integral is bigger than the first and
this in turn allows one to bound one physical quantity
by another.

This Letter focuses on the use of QCD inequalities in
two apparently unrelated problems in strong interaction
physics. The first is bounding the mass of the nucleon
from below in terms of other physical observables. This is
an old problem. Nussinov derived a bound that the nucleon
mass must be greater than or equal to 3m
=2 in the
context of QCD-inspired models. Weingarten, in his
original paper, attempted to bound the mass of the nu-
cleon as some multiple of the pion mass directly from
QCD [3]. Unfortunately, the only rigorous method found
required the study of QCD with six or more degenerate
light flavors. An alternative approach was also suggested
by Weingarten; however, it used plausible but not provable
assumptions about bounds on the quark propagator in the
presence of an arbitrary gauge potential. Subsequently,
Nussinov and Sathiapalan [6] showed that in the large Nc
limit of QCD with two degenerate flavors, the nucleon
mass is bounded by MN > �Nc m
=2�. However, previ-
ously no rigorous lower bound has been obtained for the
nucleon mass directly from QCD at finite Nc for two
degenerate flavors. Such a bound is derived here.

The second issue discussed in this Letter is the problem
of finding a lower bound on the free energy of QCD at
nonzero baryon chemical potential, or more precisely a
baryon chemical potential associated with the two light
degenerate flavors. This second problem is significant
because for the zero temperature case it is in the class
of problems for which Monte Carlo algorithms cannot be
used in lattice simulations. Moreover, no viable alterna-
tive presently exists for doing such simulations. Thus any
reliable results from the theory are extremely welcome.
The problem is also interesting in light of the intense
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The bound on the QCD free energy at fixed baryon
chemical potential will play an essential role in bounding
the nucleon mass and accordingly this problem will be
treated first. This problem is rather unusual for a QCD
inequality treatment. The approach is more commonly
associated with bounding masses of particles via the
study of correlation functions rather than with thermo-
dynamically intensive quantities such as free energy den-
sities. However, QCD inequalities have been used for
intensive quantities in the past. Vafa and Witten [8] dem-
onstrated that the vacuum energy for QCD including a �
term has an absolute minimum at � � 0. While the
validity of a related argument by Vafa and Witten [8]
that parity cannot be spontaneously broken has recently
been questioned [9], the demonstration that the minimum
vacuum energy is at � � 0 is clearly correct.

The Vafa-Witten proof is very simple. The integrand of
the functional integral is given by

Q
i�flavors det� 6D�

mi� e�SYM � i�� where det� 6D�mi�, the functional deter-
minant for a given flavor is real and non-negative [3], SYM
is the Yang-Mills action, and � is the winding number.
Thus, the only effect of setting � to be nonzero is to
multiply the rest of the integrand (which is real and
positive) by a pure phase factor ei��. Since the real part
of this phase factor is always less than or equal to unity
(and the imaginary part will integrate to zero) one im-
mediately deduces that the functional integral for non-
zero � is bounded from above by the integral with � � 0.
Finally, identifying the functional integral as the gener-
ating function Z��� � e�VE���, where V is the four dimen-
sional volume and E��� is the vacuum energy as a function
of �, one sees that the inequality for the generating
function implies that E��� > E�0�.

Here an argument analogous to that of Vafa and Witten
will be given for the problem of two flavor QCD with
degenerate quark masses at a nonzero chemical poten-
tial. The free energy density for QCD at fixed temperature
and baryon chemical potential, GB�T;�B� is given in
terms of the grand partition function ZB�T;�B� as
GB�T;�B� � � ��V3�

�1 log�ZB�T;�B�	 where V3 is the
three-dimensional volume of the system and � is the
inverse temperature. In QCD with two degenerate flavors
ZB�T;�B� can be represented as a functional integral,

ZB�T;�B� �
Z
d�A	

�
det

�
6D�m�

�B

Nc
�0

��
2
e�SYM ; (1)

where Nc is the number of colors (3 for the physical
world), the functional determinant is over a single quark
flavor, and the temperature is implemented by imposing
periodic boundary conditions in time for the gluon fields
A�t� �� � A�t� with � � 1=T; similarly antiperiodic
boundary conditions for the fermions are imposed in
the functional determinant. The factor of 1=Nc simply
reflects the fact that the chemical potential is for a baryon
number and the baryon number of a single quark is 1=Nc.
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The difficulty in simulating this functional integral on
the lattice stems from the fact that the functional deter-
minant is not generally real and positive. From the per-
spective of QCD inequalities, however, this is not a bug,
but a feature; it allows one to bound the partition function
from above:

ZB�T;�B�

Z
d�A	

�������det

�
6D�m�

�B

Nc
�0

��������
2
e�SYM : (2)

In order for inequality (2) to be useful, its right-hand
side needs to be expressed in terms of a physical quantity.
Fortunately, it can be related to the free energy density of
QCD with an isospin chemical potential [10]. An isospin
chemical potential term is of the form �I q�0��3=2�q,
which implies that the functional integral for the grand
partition function ZI�T;�I� � exp���V3 GI�T;�I�	 is
given by

ZI�T;�I��
Z
d�A	e�SYM

� det

�
6D�m�

�I

2
�0

�
det

�
6D�m�

�I

2
�0

�
;

(3)

where the two functional determinants are for the two
flavors of quark and the opposite signs of the �I terms
reflect the opposite values of I3 for the two flavors. To
proceed we use the fact that

�5

�
6D�m�

�I

2
�0

�
�5�

�
�6D�m�

�I

2
�0

�

�

�
6D�m�

�I

2
�0

�
y

; (4)

where the last equality exploits the fact that in Euclidean
space 6D is anti-Hermitian while the other two operators
are Hermitian. Exploiting the cyclic property of the
determinant allows one to write the second functional
determinant in Eq. (3) as det� 6D�m� ��I=2��0	 �
detf�5� 6D�m� ��I=2��0	�5g and using Eq. (4) then
gives

d et

�
6D�m�

�I

2
�0

�
�

�
det

�
6D�m�

�I

2
�0

��
�

: (5)

Combining Eqs. (3) and (5) yields

ZI�T;�I��
Z
d�A	

�������det

�
6D�m�

�I

2
�0

��������
2
e�SYM : (6)

Finally, inequality (2) together with Eq. (6) implies that
ZI�T; �2�B=Nc�	 � ZB�T;�B�. This relation together
with the definition of the free energy requires that

G B�T;�B� � GI

�
T;

2�B

Nc

�
; (7)

which is the first principal result of this Letter.
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Although this result was derived for two flavor QCD,
the argument goes through for QCD with two degenerate
light flavors and additional heavy flavors, provided the
chemical potential term is understood as being the chemi-
cal potential for the up and down quark contributions to
the baryon number rather than the full baryon chemical
potential. The only change in the argument needed for
this more general case is to include the functional deter-
minant for the heavy flavors in all of the functional
integrals. As the chemical potential does not apply to
these heavy flavors, the functional determinants are the
same as at � � 0 and hence are real and non-negative.
Thus, they do not alter the preceding inequalities. This
more general case is significant as in nature QCD has two
light quarks which are nearly degenerate and additional
heavy flavors. The result also applies in the general case to
the full baryon chemical potential if one is in a regime in
which the s�0s � c�0c � b�0b � t�0t � 0, since in this
regime the total baryon number comes from up and down
quarks. Such a regime occurs at zero temperature pro-
vided the chemical potential is below the critical chemi-
cal potential for strangeness condensation to occur.

A bound on the nucleon mass may be derived from
inequality (7) using thermodynamic arguments. The
bound applies to QCD with two degenerate light flavors
and any number of heavy flavors. To begin, note that in-
equality (7) holds at all temperatures, including T � 0. At
zero temperature there are no thermal fluctuations and the
system is in a single quantum state which minimizes the
free energy G � H ��N, where � is the relevant chemi-
cal potential (either isospin or baryon) and N � V3# is
the related particle number. The role of the chemical
potential at zero temperature is simply to alter the relative
free energies of the various quantum states. Thus increas-
ing the chemical potential from zero at T � 0 will have
no effect until it is large enough so that the free energy of
some other quantum state drops enough to equal that of
the true vacuum. Accordingly, there is a critical value for
the absolute value of the chemical potential at T � 0
below which the density is zero and the free energy is
that of the vacuum state (which is conventionally taken to
be zero). The critical chemical potentials are thus defined
as follows:

GB�T � 0; �B� � 0 for j�Bj<�c
B ;

GB�T � 0; �B�< 0 for j�Bj > �c
B ;

GI�T � 0; �I� � 0 for j�Ij<�c
I ;

GI�T � 0; �I�< 0 for j�Ij > �c
I :

(8)

Inequalities (7) and (8), together imply the relation

�c
B �

Nc �c
I

2
: (9)

It is straightforward to bound the �c
B from above by the

nucleon mass using a simple variational argument.
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Consider the quantum state of a single nucleon at rest.
This state has energy MN and baryon number unity; its
free energy is GB � MN ��B. Clearly this is less than or
equal to zero for �B � MN . Thus, there is at least one
state lower than the vacuum whenever �B � MN . This
implies that �c

B 
 MN . This last inequality would be-
come an equality if the system for �B just above its
critical value formed an arbitrarily low density gas of
nucleons (implying a second order transition). However,
this is not what actually happens. Based on the extrapo-
lation of finite nuclei densities and masses to infinite
nuclear matter [11] one has a solid empirical basis to
conclude that the transition is first order: for �B just
above �c

B the system has nonzero energy and nonzero
density. Thus �c

B � MN � B where B is the binding en-
ergy per nucleon of infinite nuclear matter and the in-
equality, �B � MN , is not saturated. In any event, the
inequality �c

B 
 MN together with inequality (9) yields a
bound on the nucleon mass.

MN �
Nc �

c
I

2
: (10)

For inequality (10) to be useful we need to know �c
I .

For sufficiently small values of the quark mass we know
that chiral perturbation theory accurately describes low
energy excitations of the QCD vacuum. In chiral pertur-
bation theory, the phase transition associated with in-
creasing �I is second order and amounts to pion
condensation, which implies �c

I � m
 [12]. More gener-
ally, �c

I corresponds to the state in QCD with the lowest
energy per unit isospin. Let us denote such a state as X.
There are two possibilities for X. If the transition is
second order (as it is in chiral perturbation theory),
then X is a single particle state; such a state is clearly at
zero momentum so the energy can be identified as the
mass of the particle. In this case, we can denote the mass
of the state X, as mX, and its isospin as IX. The inequality
(10) becomes

MN �
Nc mX

2 IX
: (11)

Although it is strongly believed that in nature the
transition is second order, we do not require this in
obtaining an inequality. Assume for the moment that
the transition were first order. In this case the state of
minimum energy per isospin would in fact be infinite
isospin matter (in analogy to infinite nuclear matter), i.e.,
a state of uniform isospin density and uniform energy
density filling all space. However, if this were the case,
one could construct single particle states by taking large
chunks of isospin matter (in analogy to large nuclei in a
world where the electromagnetic interaction was shut
off). The energy of such a state will have a bulk contri-
bution scaling with the volume of the chunk and equaling
�c
I I3 where I3 is the isospin of the state. Corrections to

this bulk value scale as the surface area and hence go like
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I2=33 . Thus, by making I3 arbitrarily large but finite one
can create single particle states whose energy/isospin is
arbitrary close �c

I . Identifying such a state as X one finds
that there exists an X for which mX=IX can be made arbi-
trarily close to �c

I . Accordingly, regardless of whether the
transition is first or second order one can conclude that
inequality (10) implies there exists in QCD some single
particle state X such that inequality (11) holds.

Note, the state X cannot be the nucleon itself as this is
inconsistent with the inequality above; hence, inequality
(11) makes a nontrivial prediction.

A few comments on the significance of these results is
in order. Consider the implications of inequality (7). As
noted previously, QCD at finite baryon chemical potential
cannot be simulated on the lattice using Monte Carlo
methods. It is generally believed that asymptotically
high densities can be treated analytically from QCD
using weak coupling, but nonperturbative, techniques
along the line of BCS theory [7,13]. However, it is also
generally believed that these densities are extraordinarily
high and the regime where these methods work is unlikely
to be relevant in laboratory experiments or in stellar
physics. Thus, studies of phenomenological significance
have been based on various models [7,14]. Ideally, such
models should be as constrained as possible from QCD.
Inequality (7) provides one possible basis for such a
constraint. While the left-hand side of the inequality
will be given by the model, the right-hand side is tractable
in lattice QCD. The key point which allows such lattice
simulations was recognized several years ago [10] and is
simply that the integrand in the functional integral for ZI
in Eq. (3) is positive definite and hence is amenable to
lattice studies. Lattice studies have been done both in the
quenched approximation [15] and including dynamical
quarks [16]. It is probably sensible to consider the dy-
namical lattice studies as being rather preliminary as
they have been done on small lattices. However, as the
lattice calculations improve, they may provide a strong
constraint on models of QCD at finite baryon chemical
potential.

Next consider inequality (11). It is very similar to the
bounds derived by Nussinov for a wide class of QCD-
inspired potential models [2] and to the bound derived by
Nussinov and Sathiapalan in large Nc QCD [6]. The
present result suffers in comparison to these results in
that instead of bounding the nucleon mass by Ncm
=2 the
bound is with respect to MN � �NcmX=2IX� where X is
the state in QCD with lowest mass per unit isospin. In
practice this disadvantage is fairly small — it so happens
that in QCD the state with the lowest mass per unit
isospin is the pion. The present bound has a clear advan-
tage over the results in Refs. [2,6] in that it holds for QCD
itself and is not restricted to the large Nc limit. Similarly,
the present bound is much stronger than Weingarten’s
original bound [3] in that it holds for QCD with two
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degenerate light flavors and does not require the ad hoc
assumptions about the quark propagator in the presence
of a background field. In any event inequality (11) is true
phenomenologically. There does exist a state in QCD
for which MN > �3MX=2IX� namely the case where X is
the pion. Overall, one should view any bound on the
nucleon mass in terms of other physical observables
directly from a first principles treatment of QCD as being
highly nontrivial.
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