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Quantum Hall Fractions in Rotating Bose-Einstein Condensates
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We study the quantum Hall phases that appear in the dilute limit of rotating Bose-Einstein
condensates. By exact diagonalization in a spherical geometry we obtain the ground state and low-
lying excited states of a small number of bosons as a function of the filling fraction �, the ratio of the
number of bosons to the number of vortices. We show the occurrence of the Jain principal sequence of
incompressible liquids for � � 2=3; 3=4; 4=3; 5=4 in addition to the Laughlin state � � 1=2 as well as
the Pfaffian state for � � 1. We give gap estimates by finite-size scaling of both charged and neutral
excitations.
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of the Read-Rezayi parafermionic states. However, they then one can evaluate the shift and check for its validity
Bose-Einstein condensates in dilute atomic gases offer
a unique opportunity to investigate the physics of vortex
matter when they undergo rotation [1,2]. Indeed, recent
experiments [3,4] have observed the appearance of large
vortex arrays at sufficient high angular velocity !. In
addition to this phase akin to the Abrikosov lattice of
type-II superconductors, there is the possibility that at
larger ! the lattice melts [5,6] and is replaced by a
quantum Hall liquid. Consider a trap with strong confine-
ment in the z direction such that the system is effectively
two-dimensional (2D). Then if the rotation frequency is
tuned to the characteristic frequency of the harmonic
confining potential in the xy plane, the bosons feel only
the Coriolis force and the system is equivalent to 2D
charged bosons in a magnetic field, i.e., the conditions
of the quantum Hall effect. In this regime, it has been
pointed out [7,8] that the celebrated Laughlin wave func-
tion is the exact ground state for the filling fraction � �
1=2, where � is the ratio of the number of bosons to the
number of vortices. Some of the excitations above this
ground state are quasiparticles with fractional statistics
which may eventually be probed by laser manipulations
[9]. Investigations by exact diagonalization have given
evidence [5] for even more exotic states of matter
[10,11], some involving parafermionic wave functions
introduced in the context of the fractional quantum
Hall effect for fermions [12].

In this Letter we investigate the quantum Hall states of
bosons as a function of the filling � by use of exact
diagonalizations in the spherical geometry [13,14]. This
allows one to separate bulk from edge excitations. We
show the appearance of the Bose analog of the Jain
principal sequence of fractions, � � n

n�1 ; p
p�1 . The ex-

cited states show collective modes consistent with a com-
posite fermion picture in which there is binding of one
vortex per boson.We obtain evidence for the Pfaffian state
[10,11] at � � 1 by displaying its peculiar half-vortex
excitations. We give gap estimates for � � 1; 2=3; 1=2 by
a study of charged and neutral excitations. For higher
fillings, � � 3=2, we observe some states with properties
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show no clear tendency to convergence to the thermody-
namic limit.

In the rotating frame [15], the Hamiltonian describing
N bosons of mass m is given by
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where the xy trap frequency is !0, the axial frequency is
!z, and the angular velocity vector is !ẑz. In the ultra-
cold atomic gases the interaction takes place through
s-wave scattering only and is thus given by V�r� �
�4� �h2as=m���3��r� where as is the s-wave scattering
length. For ! close to !0, the physics is that of charge-e
bosons in a magnetic field B � �2m!=e�ẑz, corresponding
to a magnetic length ‘ �

����������������
�h=2m!

p
. There is then a 2D

regime in which the boson wave function along the z axis
is the ground state of the harmonic oscillator and the
interaction is now given by V2D�r� � g‘2��2��r� (the vec-
tor r is 2D), with g �

���������
32�

p
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is

the confinement length along z. The energy scale of the
quantum Hall problem is thus set by g.

We are thus led to study the quantum Hall effect of
bosons interacting through a delta potential in the lowest
Landau level (LL) [16]. To study the vortex liquids that
appear as a function of the filling factor �, we use the
spherical geometry [14,17] in which the bosons move on a
sphere of radius R in the magnetic field of a monopole
B � �hS=eR2 at the center of the sphere, giving rise to
2S � 1 cyclotron orbits in the lowest LL. In the thermo-
dynamic limit, the filling factor � is given by N=2S.
However, for the incompressible liquids there is, in
general, a finite shift in the relation between the number
of particles and the flux, i.e., one has generally 2S �
�1=��N � X. If we have a guess for the ground state
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against numerical results. For example, the bosonic
Laughlin state for � � 1=2 on the sphere is realized for
2S � 2N � 2 by the wave function


1=2 �
Y
i<j

�uivj � ujvi�
2; (2)

where the spinor coordinates �u; v� are given by

�ui; vi� � �cos�i=2ei�i=2; sin�i=2e�i�i=2�: (3)

This is an exact zero-energy eigenstate of the present
problem [8].We have conducted Lanczos diagonalizations
for various N and flux 2S to elucidate the nature of the
incompressible liquid states. States can be labeled by their
total angular momentum L, contrary to the planar ge-
ometry where only the z component is conserved.

Jain sequence.—The signature of incompressible
states is the presence of a L � 0 singlet ground state
separated by a clear gap from excited states. A typical
spectrum is given in Fig. 1(a) for � � 1=2. In the excited
states we observe a well-defined collective mode which is
gapped for all values of L. Signs of incompressible liquids
are also seen for the fractions � � 2=3; 3=4; 4=3; 5=4;
some sizes are displayed in Figs. 1(b)–1(d). These frac-
tions are the bosonic analog of the Jain sequence [18] of
fractional quantum Hall states. This sequence was first
reported in the disk geometry [5]. Such fractions can be
explained by a composite particle picture in which the
composite fermion (CF) is a boson bound to one vortex.
Then the integer quantum Hall effect with n filled CF
LLs leads to a fraction at � � n

n�1 . This state is realized
on the sphere for 2S � �n� 1�N=n��n� 1�, which is
exactly what we observe. The collective mode is then an
excitonlike mode obtained by promoting one CF from the
highest occupied LL to the next LL. On the sphere the
maximal L is then given by Lmax � �N=n� � n � 1, in
complete agreement with our results. The series of values
for (N, 2S) is aliased [19] with the sequence of fractions at
L
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FIG. 1. Energy spectrum for (a) � � 1=2 (N � 8; 2S � 14),
(b) � � 2=3 (N � 8; 2S � 9), (c) � � 3=4 (N � 12; 2S � 12),
(d) � � 4=5 (N � 8; 2S � 5). Energies are in units of g and the
horizontal axis is total angular momentum.
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� � p
p�1 . Indeed, if (N; 2S) matches the fraction n=�n �

1� then it also matches the fraction p=�p � 1� for p �
N=n. Hence, the same data set points to the presence of
the fractions � � 4=3 and 5=4 (we do not have enough
points to provide gap estimates). The two-particle corre-
lation function g�r� is displayed in Fig. 2 for some states
in the CF sequence. For � � 1=2 it is essentially free of
finite-size effects and shows the strong correlation hole
characteristic of a Laughlin ground state. The state with
� � 2=3 no longer vanishes at the origin and hence has a
nonzero ground state energy. The CF sequence also in-
clude the fractions � � 3=2 and � � 2. For these values
we find families of incompressible states in the (N; 2S)
plane but they show no sign of convergence toward the
thermodynamic limit, neither in the ground state energies
nor in the gap values. For these fractions, we have candi-
dates possibly originating from the Read-Rezayi parafer-
mionic wave functions (see below). The gap to neutral
excitations can be estimated by finite-size scaling. Our
data for � � 1=2 are plotted versus 1=N in Fig. 3; there is
smooth convergence towards 	 0:09. This gap can also be
estimated from the energies of the Laughlin quasielectron
and quasihole. For � � 1=2, the quasiholes have exactly
zero energy since the interaction is a delta function. The
quasielectron gap versus 1=N is displayed in Fig. 3; it
converges towards a value close to that of the neutral
excitation. We quote our final result as 0.095(5), the error
being estimated from the dispersion of the values when
we vary the fitting procedure as well as the difference
between the two methods (charged [20] versus neutral
excitations). For � � 2=3, both charged excitations are
gapped. Their energies and those of the neutral mode are
displayed in Fig. 3. We estimate the gap in this case as
0.05(1). Even if the N values are the same for 1=2 and 2=3,
the flux per particle is closer to the thermodynamic limit
for 1=2 than for 2=3. This is more and more problematic
as one goes down the hierarchy.

For fillings less than 1=2, the spectrum has many zero-
energy eigenstates that are the quasiholes of the Laughlin
state Eq. (2). This obscures the appearance of fractions
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FIG. 2. Two-particle correlation function g�r� as a function
of great circle distance in units of ‘. The � � 1=2 curve is
plotted for sizes N � 8; 9 and for 2=3 N � 8; 10.
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FIG. 4. (a) Spectrum at the Pfaffian matching condition N �
12; 2S � 10, with a collective mode above an isolated singlet
ground state (b) with one extra flux quantum, two quasipar-
ticles give rise to a degenerate set of states L � 0; 2; 4; 6.
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FIG. 5. Gaps for the Pfaffian at � � 1. The dashed line is a
linear fit to the charged excitations of the three largest systems,
the solid (respectively, dotted) line is a linear (respectively,
quadratic) fit of the neutral excitations.
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FIG. 3. Gaps for the Bose-Jain sequence � � 1=2 and 2=3.
The lines are linear fits.
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less than 1=2. If we change the interaction from pure delta
by adding a pseudopotential V2 [14] in the next allowed
partial wave for bosons, i.e., ‘ � 2, then we find other
states from the hierarchy, the strongest being � � 2=5.

Pfaffian state.—The filling � � 1 corresponds to the
absence of magnetic field acting upon the composite
fermions. Previous studies [21] are indicative that pairing
of the CFs takes place instead of a Fermi surface. An
appealing wave function describing this phenomenon is
the so-called Pfaffian state. On the sphere it can be
written as


��1 � Pf

�
1

uivj � ujvi

�Y
i<j

�uivj � ujvi�; (4)

where Pf stands for the Pfaffian, which is the antisymme-
trized product of pair wave functions [22](a fermionic
version of this state is a good candidate to describe the
enigmatic � � 5=2 quantum Hall state). Calculations of
overlaps between the model Pfaffian wave function Eq. (4)
and the exact ground state suggest that it describes the
physics of bosons at � � 1 in toroidal and disk geometry
[5,7,8]. The bosonic Pfaffian state is realized on the sphere
for 2S � N � 2 for all N even. Our calculations lead to
incompressible states at these special values for N �
4–16. There is a gap to a neutral excitation branch that
appears in Fig. 4 for N � 12. The scaling of this gap for N
ranging from 4 to 16 is displayed in Fig. 5. This state also
has charged excitations that are different from those of a
Laughlin fluid. If we add or remove one flux quantum,
then two quasiparticles are created, leading to a set of
low-lying states with an alternate even-odd character; see
Fig. 4(b). This is consistent with the spectrum for two
identical particles with repulsive interactions. This is
observed for all accessible sizes. We consider this as a
proof that the physics is different from that of the CF
sequence and is the hallmark of the Pfaffian state [11].
The gap calculated from charged excitations does not
scale as well as the neutral gap; see Fig. 5. This is clearly
different from the case of fermions [19]. Our estimate of
030402-3
the Pfaffian gap is 0.05(1). The correlation function g�r� is
shown in Fig. 6. It now has a hump at the origin possibly
due to the pairing of the CFs. The energy of this state is
lowered by a correlation dip (instead of a hole) which
appears at some characteristic radius of the order of 1
magnetic length. For larger separation, g�r� approaches 1
but with a characteristic length scale which is definitely
larger than that occurring in Fig. 2. The correlation
length of the Pfaffian is larger than for the Jain-like
fractions.

To investigate the stability of the Pfaffian state, we
studied a potential with two partial waves, L � 0 and 2.
In the range jV2=V0j & �0:25 we find that the Pfaffian
state remains the ground state. It is replaced by a com-
pressible liquid when we go outside this window. We
have also studied a one-parameter potential interpolating
from the delta interaction to the Coulomb interaction by
adding the Coulomb pseudopotentials multiplied by a
common factor. We find that the Pfaffian evolves
smoothly up to the Coulomb point. The gap extrapolates
always to a nonzero value, we also observe a change of
030402-3
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FIG. 6. The two-particle correlation function for the exact
ground state at the Pfaffian point 2S � N � 2. It has an extra
concentration of bosons at the origin.
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the finite-size effects: the curvature of the neutral mode
versus 1=N becomes upwards for long-range interactions.

Read-Rezayi states.—For larger fillings it has been
suggested by Cooper et al. [5] that fractions occur at � �
k=2 and are well described by the Read-Rezayi parafer-
mionic wave functions. These functions involve cluster-
ing of k particles and are a generalization of the Pfaffian
which corresponds to simple pairing, i.e., k � 2. On the
sphere they are realized for 2S � 2

k N � 2. There are
possible candidates at � � 3=2 for N � 6; 9; 12; 15,
� � 2 for N � 8; 12; 16, and the fraction � � 5=2 may
be realized for N � 15 and 20 (but the gap is very small).
We have computed the gaps to neutral and charged ex-
citations: they do not show clear signs of convergence
towards a thermodynamic limit. The gap is nonmonoto-
nous as a function of the size for � � 3=2, and for � � 2
finite-size effects are very large, preventing any sensible
extrapolation. One possibility is that these states have
very large correlation lengths and are not accommodated
on our largest spheres. This is consistent with the fact that
the correlation function shows very strong oscillations
and no hint of incompressibility. Evidence for clustering
of more particles comes from the correlation function
where we see the same phenomenon as in the Pfaffian
case. The hump at the origin is even more pronounced
and surrounded by a correlation hole. The hump also
increases with the filling albeit we cannot make quanti-
tative statements.

If we increase the number of bosons at fixed flux,
then the spectrum becomes rotorlike: the levels lie on
parabolas described by effective Hamiltonian 1

2I L
2 and

correlation effects disappear.
We have shown the appearance of the Jain principal

sequence of quantum Hall fractions in rotating Bose-
Einstein condensates. The composite fermion picture
gives a successful account of the observed fractions as
well as their collective mode excitations. The Pfaffian
state is realized at � � 1, as seen from the special match-
ing of flux and number of bosons as well as its half-flux
030402-4
quasiparticle. The gaps we estimate from our diagonal-
izations are all of the order of �h!as=‘z.
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