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Does a Single Zealot Affect an Infinite Group of Voters?
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A method for studying the exact properties of a class of inhomogeneous stochastic many-body
systems is developed and presented in the framework of a voter model perturbed by the presence of a
‘‘zealot,’’ an individual allowed to favor an ‘‘opinion.’’ We compute exactly the magnetization of this
model and find that in one (1D) and two dimensions (2D) it evolves, algebraically (� t�1=2) in 1D and
much slower (� 1= lnt) in 2D, towards the unanimity state chosen by the zealot. In higher dimensions
the stationary magnetization is no longer uniform: the zealot cannot influence all the individuals. The
implications to other physical problems are also pointed out.
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presence of a ‘‘zealot’’: a biased individual who favors one the master equation:
Researchers have devoted much attention to the field of
nonequilibrium many-body stochastic processes [1]. In
particular, the study of exact solutions of prototypical
models such as the voter model [2] has proven to be
fruitful for understanding a large class of nonequilibrium
phenomena [1]. However, more realistic systems taking
into account the important dynamical effects of inhomo-
geneities, constraints, and disorder (see, e.g., [1,3] and
references therein) are less understood. To gain compre-
hension of these situations, exact results for systems mod-
eling inhomogeneous situations in any dimension are
desirable, but rather scarce [3].

In this work, motivated by these considerations, and
with the voter model as a paradigm, we present tech-
niques for computing the exact properties (in any dimen-
sion) of a class of stochastic many-body systems with
inhomogeneities.

The voter model is an Ising-like model where an ‘‘in-
dividual’’ (or spin) associated with a lattice site r can
have two different opinions �r � �1 [2]. The dynamics
of the system is implemented by randomly chosing one
individual and assigning to it the value of the spin of one
of its randomly chosen nearest neigbors. In the voter
model, the global magnetization is conserved and the
dynamics is Z2 symmetric (invariance under the global
inversion �r ! ��r). The importance of the voter model
stems from the fact that it is one of a very few stochastic
many-body systems that are solvable in any dimension
and is useful for describing the kinetics of catalytic
reactions [4–6], in studying coarsening phenomena
[6,7] and as a prototype model of opinion dynamics [8].

For the sake of concreteness, and without loss of gen-
erality, we specifically present our method and tech-
niques in the framework of an inhomogeneous voter
model where, to mimic in a simple manner the fact that
a group of agents may have heterogeneous interactions,
the conventional voter dynamics is supplemented by the
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opinion. We study the effect of this perturbation by com-
puting the exact long-time magnetization, which is no
longer conserved, in dimensions d � 1; 2, and 3. In low
dimensions the zealot drastically affects the dynamics:
the system evolves towards unanimity with the latter. The
approach to the stationary state is algebraic in 1D and
logarithmically slow in 2D. In d � 3, the effect of the
zealot is less dramatic and the local stationary magneti-
zation is a nontrivial function of the distance to this
biased individual. These findings, although formulated
in an ‘‘opinion dynamics’’ language, are, as pointed out
hereafter, relevant to other physical problems.

The inhomogeneous voter model that we study is
defined on a hypercubic lattice of size �2L� 1	d,
where individuals, labeled by a vector r having compo-
nents �L 
 ri 
 L (with i � 1; . . . ; d), may interact ac-
cording to the usual voter dynamics. In addition, we
now consider that a zealot, at site ‘‘0’’, tends to favor
the diffusion of the �1 opinion via the interaction with
his neighbors: the zealot is the only individual in the
system allowed to change his state from �1 to �1
(with rate 
 > 0) without regard to his neighbors, with
whom he nevertheless interacts. According to the spin
formulation of the model, the state of the system is
described by the collection of all spins: S � f�rg. In
this language, the dynamics of the model is governed
by the usual voter model transition rate [1,2,4,5] sup-
plemented by a local term involving the local zealot’s
reaction. The spin-flip rate, wr�S	 � w��r ! ��r	,
therefore reads

wr�S	 �
1

�

�
1�

1

2d
�r

X
r0
�r0

�
�



2
�1� �0	�r;0: (1)

Here the sum on the right-hand side (rhs) runs over the 2d
nearest neighbors r0 of site r and � � 1=�d > 0 defines
the time scale. The probability distribution P�S; t	 satisfies
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d
dt

P�S; t	 �
X
r

�wr�S
r	P�Sr; t	 � wr�S	P�S; t	�; (2)

where the state Sr differs from S only by the spin-flip of
�r. With the master Eq. (2), in the limit L ! 1, the
equation of motion of the local magnetization Sr�t	 �P

S�r P�S; t	 reads

dSr�t	
d��t	

� �rSr�t	 �


�
�S0�t	 � 1��r;0: (3)

Here �r denotes the discrete Laplace operator:
�rSr�t	 � �2dSr�t	 �

P
r0Sr0�t	.

The last term on the rhs of Eq. (3) is due to the effect of
the zealot and appears only in the case where r � 0.

An important consequence of Eq. (3) is that the only
possible uniform final magnetization is Sr�1	 � 1, i.e.,
the state favored by the zealot. However, in d � 3, as
shown hereafter, the stationary magnetization profile
turns out to be nonuniform (but isotropic).

Using the properties of the modified Bessel functions
of the first kind, Ir�t	 [9], we obtain the formal solution of
Eq. (3):

Sr�t	�
X
k

Sk�0	
Yd
i�1

�e�2�tIki�ri�2�t	�

�

Z t

0
dt0�1�S0�t� t0	�

Yd
i�1

�e�2�t0Iri�2�t
0	�: (4)

To obtain an explicit expression for the magnetization we
solve the self-consistent integral Eq. (4) for r � 0 and
then plug the result back into (4). For this purpose it is
useful to denote the Laplace transform of a product of
Bessel functions (multiplied by an exponential term)

ÎI r�s; �	 �
Z 1

0
dt e�st�e�2d�tIr1�2�t	 . . . Ird�2�t	�: (5)

This quantity can be rewritten in terms of Watson inte-
grals, or ‘‘lattice Green-functions’’:

ÎI r�s; �	 �
Z �

��

ddq
�2�	d

e�iq:r

s� 2�
�
d�

Pd
i�1 cosqi

� ; (6)

where q � �q1; . . . ; qd	 is a d-dimensional vector.
Laplace-transforming Eq. (4), and using the convolu-

tion theorem, we obtain the following expression for the
Laplace transform of the local magnetization:

ŜS r�s	 �
Z 1

0
dt e�stSr�t	 �


ÎIr�s; �	

s�1� 
ÎI0�s; �	�
; (7)

where, for technical simplicity, we consider the zero
initial magnetization state: Sk�0	 � 0.

The exact expression for the long-time magnetization
is obtained by Laplace inverting the s ! 0 expansion of
Eq. (7) and paying due attention to the situations where
the integrals (6) are divergent. In the sequel the norm of
the vector r is denoted r.
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We first consider the one-dimensional problem. In this
case, the quantity (5) reads [9]:

ÎI r�s; �	 � ÎIr�s; �	 �
f�

															
s� 4�

p
�

			
s

p
�=�2

				
�

p
	g2r																					

s�s� 4�	
p : (8)

It should be noticed that the s ! 0 behavior of (8)
diverges as s�1=2.

Laplace inverting the s ! 0 expansion of (7), together
with the expression of (8) for r � 0, we get (�t ! 1):

S0�t	 � 1�
2




						
�
�t

r
: (9)

In the more general case, where r > 0, the local mag-
netization is obtained similarly from (7) and (8) [in the
limit s ! 0, with r

			
s

p
kept fixed]:

Sr�t	 ’ erfc

�
r

2
						
�t

p

�
; (10)

where erfc�z	 is the usual complementary error function
[9]. The expression (10) is valid for �t � 1, and is par-
ticularly useful in the scaling limit where both r ! 1 and
t ! 1, but where the ratio r=

						
�t

p
is finite.

When r is finite (i.e., 0< r<1) and �t ! 1, we
obtain the following long-time behavior:

Sr�t	 � 1�
r� �2�=
										

��t
p : (11)

In two dimensions, the integral (6) is also divergent in the
long-time regime s ! 0 and therefore its main contribu-
tion arises from q2 � q21 � q22 ! 0. In this sense, we first
expand (6) for small s in the case where r � 0:

ÎI 0�s; �	 ���!
s!0

�
1

4��
ln

�
s
�

�
; (12)

which implies that the long-time behavior of the average-
opinion of the zealot is

S0�t	 � S0�1	 ’ �

�
4��



�
1

ln�t
; (13)

where S0�1	 � 1.
For the other individuals we proceed similarly and

from (6), with r � 1, we have

ÎI r�s; �	 ���!
s!0

1

2��
K0

 
r
				
s
�

r !
; (14)

where K0�x	 is the usual modified Bessel function of the
third kind [9]. Using the small argument expansion of
such a Bessel function [9], we find that the long-time
behavior in the region where �t � r2 � 1 is

Sr�t	 � Sr�1	 � �
lnr2

ln�t
; (15)

where the stationary magnetization corresponds again to
the unanimous opinion, as in 1D: Sr�1	 � 1.
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The regime where r2 / �t ! 1 should still be dis-
cussed separately. In fact, in this regime, from (7), (12),
and (14):

ŜS r�s	 ���!
s!0;r!1

�
2K0�r

									
s=�

p
	

s ln�s=�	
; (16)

where s ! 0 and r ! 1, but r
									
s=�

p
is finite.

From results (10), (11), (15), and (16) we infer that in
low dimensions, at large time, the effect of the zealot
appears at two length scales: (i) The opinion of individu-
als ‘‘close’’ (r2 � �t) to the zealot evolves algebraically
(/ t�1=2) in 1D and logarithmically (/ 1= lnt) in 2D
towards the unanimous opinion Sr�1	 � 1. (ii) For indi-
viduals ‘‘far’’ (r2 / �t ! 1) from the zealot, the local
magnetization evolves as a smooth scaling function of
u � r2=2

						
�t

p
in 1D. This is, however, no longer the case

in 2D, where, due to logarithmic terms arising in (16), the
magnetization has not a scaling form. A qualitatively
similar result, but within a different context, has recently
been reported in Ref. [10]. One can also notice that results
(10), (11), (15), and (16) are (mainly) independent of the
rate 
: for the long-time behavior of the local magneti-
zation; in low dimensions, only the fact that there is a
biased individual (i.e., 
 > 0) matters.

We therefore conclude that both in 1D and 2D the
zealot eventually affects all the individuals: the number
of voters having a final �1 opinion are within a ‘‘circle’’
whose radius increases as

						
�t

p
! 1.

We now study the three-dimensional situation, and
then consider its generalization to the case where d � 3.

When d � 3, the integrals (6) are well defined for all
the values of s, and, in particular, when s ! 0. Therefore,
conversely to what happens in 1D and 2D, to determine
the long-time behavior of the magnetization we cannot
simply focus on the q ! 0 expansion of (6). Fortunately,
very recently Glasser and Boersma have been able to
explicitly compute (6) in the 3D case where s � 0 [11].
We now take advantage of these findings to compute the
stationary magnetization in 3D. We therefore introduce a
triplet �ar; br; cr	 of rational numbers depending on r,
given in Table II of Ref. [11], and the quantity g0 �
��

			
3

p
� 1	=96�3��2� 124	�

2�1124	, where ��z	 is Euler’s
Gamma function [9].

With help of the results obtained in [11], we are in a
position to compute the 3D stationary local magnetiza-
tion (SLM) by taking the s ! 0 limit in (7):

Sr�1	 �

�arg

2
0 � crg0 �

br
�2�

g0�2�� 
g0�
: (17)

In particular, for r � 0 we have the triplet �a0; b0; c0	 �
�1; 0; 0	 [11] and thus obtain S0�1	 � �
g0=�2�� 
g0	�.

To gain, in a simple manner, some further insight of
the behavior of the discrete expression (17) when r ! 1,
it turns out to be fruitful to take the continuum limit of
(3). In this limit the SLM is S�r;1	, and we have to solve
the problem of determining the electric potential due
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to a ‘‘charge’’ at the origin. One should pay due atten-
tion to the fact that this electrostatic reformulation needs
to be supplemented by additional information since, from
the continuum limit of (3), the charge is a priori an
unknown quantity. To overcome this difficulty, in 3D,
we take advantage of our knowledge of the discrete
version of the problem and, with (17), we compute the
charge at site r � 0 as 


� �1� S0�1	� � �2
=�2�� 
g0	�.
We therefore obtain the following 3D continuum station-
ary equation:

�S�r;1	 � �
2


2�� 
g0
�3�r	; (18)

where � is the 3D-Laplacian operator and �3�r	 denotes
the 3D-Dirac delta function.

The solution of Eq. (18) depends on 
 and reads:

S �r;1	 �



2��2�� 
g0	
1

r
; �r > 0	: (19)

Comparing the predictions of the results (17) and (19), we
notice that they agree very well, even for finite r: For
instance, when 
 � 2�, at r � �3; 1; 0	, we have Sr�1	 �
0:0339 and S�r;1	 � 0:0334, whereas for r � �3; 1; 1	
Sr�1	 � 0:0319 and S�r;1	 � 0:0319.

Results (17) and (19) show that in 3D (conversely to
what happens in low dimensions) the SLM is an iso-
tropic [which is clear from (6) and (19)] but nonuni-
form function decaying with the norm of r: Sr�1	 �
S�r;1	 � �A3�
	=r�, where the amplitude is given by
(19) [and r > 0]. The reasoning can be extended to di-
mensions d > 3, where the electrostatic reformulation
gives the result (for r > 0): S�r;1	 � �Ad=rd�2	. Again
the computation of the amplitude Ad requires the explicit
knowledge of ÎI0�s � 0; �	 in dimensions d > 3.

Despite the fact that in d � 3 the s ! 0 analysis of (6)
is a difficult task, we can infer (for r finite) the long-time
behavior from (4): Sr�t	 � Sr�1	 ����t	1��d=2	.

From Eq. (4) we can also compute the total magneti-
zation: M�t	 �

P
rSr�t	 � M�0	 � 


R
t
0 d��1� S0��	�.

This expression shows that in the voter model (
 � 0)
the quantity M�t	 is conserved, which is no longer the
case when 
 > 0. With the help of the results (9), (13),
and (17), we obtain the long-time behavior of M�t	 [here
M�0	 � 0]:

M�t	 �

8<
:
��t	1=2; d � 1;
�t= lnt; d � 2;
�t; d � 3:

��t ! 1	: (20)

These results show that in this inhomogeneous voter
model the saturation time ts, that is, the time neces-
sary to have M�ts	 comparable to the size Ld (where L !
1) of the system, scales as �ts � L2 in 1D, �ts � L2 lnL
in 2D, and �ts � Ld for d � 3. These statements are in
agreement with results obtained for other models (see,
e.g., [4]).
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In this work we have developed a method to compute
some exact properties of a class of stochastic many-body
problems with inhomogeneities and have explicitly pre-
sented this approach in the framework of an inhomoge-
neous voter model where the usual voter dynamics is
perturbed by the local presence of a single zealot. For
this opinion dynamics problem, we have computed ex-
actly, in dimensions d � 1; 2, and 3, the long-time mag-
netization (mean-average opinion of each voter). From
our exact results we have seen that in low dimensions
the zealot (i.e., the inhomogeneity) always affects the
mean-average opinion and that its effect propagates as
t1=2. In fact the mean opinion of individuals approaches,
algebraically in 1D [see (11)], according to the scaling
expression (10), and logarithmically slowly in 2D [see
(15)], the unanimity state favored by the zealot. These
results are (mainly) independent of the strength of the
biased individual. In 3D the situation is completely differ-
ent and the (stable) stationary mean-average opinion of a
voter is no longer uniform but follows the nontrivial
isotropic function (17) that decays with the inverse of
the distance to the zealot [see (19)], a result also obtained
in the continuum limit via a suitable electrostatic refor-
mulation, and then extended to the case where d > 3. The
findings obtained in this work, and the differences be-
tween the behaviors observed in low dimensions and in
d � 3, can be qualitatively understood in realizing that
the local magnetization is the solution of a diffusionlike
Eq. (3) supplemented by a local boundary term (the
zealot) and taking into account the fact that in 1D and
2D random walks are recurrent (which, in our case,
implies that all individuals interact with the zealot),
while in d � 3 they are transient, and therefore there is
a finite probability that individuals never interact with the
zealot [1,2]. It is instructive to compare our results to
those obtained in the conventional voter model [4–7]: the
presence of the zealot clearly implies that the magneti-
zation is no longer conserved and that the dynamics is not
translationally invariant. This comparison also shows that
a single inhomogeneity (here, the zealot) can deeply
affect the stationary and the long-time properties of an
interacting spin system, whose perturbed dynamical be-
havior depends on the dimension d.

Despite the fact that our method and results have been
formulated in an opinion dynamics language, we empha-
size that they have a broad physical relevance and can be
applied to a large class of stochastic many-body prob-
lems. As a physical illustration we can consider the
kinetics of the monomer-monomer catalysis on an inho-
mogeneous substrate that locally desorps preferentially
one species of monomer [4,5,12]. Identifying spins �1
(� 1) with A (B) particles, the monomer-monomer reac-
tion can be mapped onto an Ising model with mixed voter
and Kawasaki dynamics [4,5], whose time scales are,
respectively, defined by 1=�d and 1=�0d, and an inhomo-
geneous term [as in (1)] that mimics the local desorption
(at r � 0), with rate 
, of particles of species B [4,12]. For
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this model, with ~�� � �� �0, the local concentration
cr�t	 of A particles obeys to �d=� ~��dt	�cr�t	 � �rcr�t	 �
�
= ~��	�c0�t	 � 1��r;0, whereas the concentration of B par-
ticles, at site r, is 1� cr�t	 [12]. Comparing the equation
for cr with Eq. (3), it is clear that the concentration of
particles in the catalysis problem can immediately be
inferred from the above results for Sr�t	 [12]. Another
field of pertinence of this work, according to the well-
known relation between the (1D) voter and Glauber-Ising
models [4,5,13], is the area of inhomogeneous magnetism.
We can also mention that our method, which can take into
account the presence of many inhomogeneities and can
deal with systems of more than two states per site, is of
direct relevance for a large class of reaction-diffusion
models [1]. In this context, a diffusive model of interact-
ing particles where an homogeneous source is in compe-
tition with a local trap has been solved [12].
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