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We show that communication without a shared reference frame is possible using entangled states.
Both classical and quantum information can be communicated with perfect fidelity without a shared
reference frame at a rate that asymptotically approaches one classical bit or one encoded qubit per
transmitted qubit. We present an optical scheme to communicate classical bits without a shared
reference frame using entangled photon pairs and linear optical Bell state measurements.

DOI: 10.1103/PhysRevLett.91.027901 PACS numbers: 03.67.Hk, 03.30.+p, 03.65.Ta, 03.65.Ud
that all currently proposed schemes for violating Bell
inequalities presume the existence of a SRF—the results

E 1��� � d�R����Ry��� �
2
I; (1)
Quantum physics allows for powerful new communi-
cation tasks that are not possible classically, such as
secure communication [1] and entanglement-enhanced
classical communication [2]. In investigations of these
and other communication tasks, considerable effort has
been devoted to identifying the physical resources that
are required for their implementation. It is generally
presumed, at least implicitly, that a shared reference
frame (SRF) between the communicating parties is such
a resource, with the precise nature of the reference frame
being dictated by the particular physical systems in-
volved. For example, if the sender (Alice) and receiver
(Bob) are communicating via spin-1=2 systems, it is gen-
erally presumed that they must share a reference frame
for spatial orientation so that they may prepare and mea-
sure spin components relative to this frame. Despite the
ubiquity of this presumption, we shall be asking whether
it is necessitated by the laws of quantum physics.

This question is clearly of interest for pragmatic rea-
sons. Establishing a SRF between two parties requires
communication via a channel that is capable of trans-
mitting some ‘‘physical’’ information (such as spatial
orientation). Establishing a perfect SRF requires infinite
communication (i.e., transmitting a system with an
infinite-dimensional Hilbert space, or an infinite number
of systems with finite-dimensional Hilbert spaces [3,4].)
Moreover, any finite (i.e., imperfect) SRF must be treated
quantum mechanically and thus inevitably suffers distur-
bances during measurements, causing it to degrade.
Finally, we note that shared prior entanglement, a valu-
able resource in distributed quantum information pro-
cessing, can be consumed to establish SRFs [5,6].

In addition to these pragmatic issues, the presumed
necessity of SRFs also touches upon a number of more
foundational questions in quantum mechanics. For in-
stance, it has been argued [7] that the physical nature of
SRFs is the key issue in Bohr’s reply to Einstein,
Podolsky, and Rosen. In this context, it is interesting
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presented here indicate that this presumption is in fact
unnecessary.

In this Letter, we show that both classical and quantum
communication can be achieved without first establishing
a SRF by using entangled states of multiple qubits. We
explicitly describe a scheme that employs two qubits to
communicate a single classical bit of information, and a
scheme that uses four qubits to transmit an encoded
‘‘logical’’ qubit. In both schemes, the communication is
achieved with perfect fidelity. (Note that, in contrast, any
scheme that attempts to establish a SRF first, using a finite
amount of communication, will necessarily be subject to
errors.) We present the optimal schemes for communicat-
ing classical and quantum information with perfect
fidelity given N transmitted qubits, and we prove that
communication of one classical bit per transmitted qubit
or one logical qubit per transmitted qubit can be achieved
asymptotically. As an explicit example of the practicality
of our scheme for classical communication without a SRF,
we propose a feasible experiment using existing optical
technology to communicate one classical bit of informa-
tion per entangled photon pair.

Our communication scenario consists of two parties
that have access to a quantum channel but do not possess a
SRF. For simplicity, we consider a noiseless channel that
transmits qubits (our results can be extended to noisy
channels or higher-dimensional systems). Such a channel
defines an isomorphism between Alice’s and Bob’s
local experimental operations. Specifically, representing
Alice’s experimental operations using one qubit Hilbert
space and Bob’s using another, the isomorphism is given
by a unitary map R���, � 2 SU�2� between them. We
define the lack of a SRF as a lack of any knowledge of this
isomorphism, i.e., a lack of any knowledge of �. If Alice
prepares a qubit in the state � and transmits it to Bob, he
represents the state of this received qubit as a mixed
density operator,
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obtained by averaging over all possible isomorphisms,
i.e., all unitary maps R���, � 2 SU�2�. (Here, d� is
the SU(2)-invariant measure.) Thus, without a SRF,
Alice cannot communicate any information to Bob using
only a single qubit.

However, if Alice chooses to send more than one qubit
to Bob, some information can be transmitted because the
relative state of the qubits carries information regardless
of the existence of a SRF. For instance, if Alice prepares
two qubits in the state �, Bob describes this same pair of
qubits by the state that results by application of the super-
operator

E 2��� �
Z
d�R1��� � R2����Ry

1 ��� � Ry
2 ���: (2)

Note that this two-qubit superoperator does not average
over independent transformations for each qubit; instead,
it averages over a single-qubit transformation � 2 SU�2�
applied identically to both qubits.

Consider the following example where Alice encodes a
single classical bit b by transmitting two qubits: for
b � 0, Alice sends parallel spins (j0i1j0i2), and for
b � 1 she sends antiparallel spins (j0i1j1i2). Using his
optimal measurement [8], Bob can correctly estimate b
with probability 3=4. Thus, with this scheme, some in-
formation about Alice’s bit is transmitted without a SRF,
but some is lost.

However, Alice need not send product states as in the
above example. As with the problem of establishing a
shared direction [3] or Cartesian frame [4], entanglement
between qubits provides an advantage. To determine
which (possibly entangled) states may allow for optimal
communication, we note that the tensor representation of
SU(2) on two qubits decomposes into a direct sum of a
j � 0 irreducible representation (irrep) carried by the
antisymmetric state j		i � �1=

���
2

p
��j01i12 	 j10i12� and

a j � 1 irrep carried by the symmetric states, and that the
tensor representation of SU(2) on this direct sum does not
mix these irreps. Thus, the antisymmetric state is invari-
ant under the action of E2, E2�j	

	ih		j� � j		ih		j,
and any density operator with support on the symmetric
subspace is mapped by E2 to the completely mixed state
1
3 Ij�1 over the symmetric subspace. Thus, we propose the
following communication protocol. Alice sends Bob the
antisymmetric state j		i to communicate b � 0 and any
state in the symmetric subspace for b � 1. Bob then
performs a projective measurement onto the antisymmet-
ric and symmetric subspaces and will recover b with
certainty. Thus, using this protocol, Alice can communi-
cate one classical bit to Bob for every two qubits sent.

The efficiency of the scheme can be increased by en-
tangling more qubits. Consider the transmission of N
qubits; the superoperator EN that describes the lack of a
SRF acting on a general density operator � of N qubits is
given by
027901-2
E N��� �
Z
d�R1��� � � �RN����Ry

1 ��� � � �Ry
N���:

(3)

This ‘‘collective’’ tensor representation of SU(2) on N
j � 1=2 systems [i.e., R��� 2 SU�2� acting identically on
all qubits] can again be decomposed into a direct sum of
SU(2) irreps, with angular momentum quantum number j
ranging from 0 or 1=2 to N=2. In general, there will be
multiple irreps for a given value of j. For simplicity, we
assume that N is even. In this case, we can express the
resulting direct sum as

SU�2��N1=2 � c�N�N=2SU�2�N=2 
 c
�N�
N=2	1SU�2�N=2	1 
 � � �


 c�N�0 SU�2�0; (4)

where SU�2�j denotes the irrep of SU(2) with angular
momentum quantum number j, and c�N�j denotes the num-
ber of times that the irrep SU�2�j appears in the direct
sum (i.e., the multiplicity of the irrep).

We note that the different irreps of the same j value
(the multiplicities) are defined by the ordering of the
coupling, because there are in general many ways to
couple N particles to total j. Thus, to agree on the
definitions of the multiple irreps for a given j, Alice
and Bob must agree on a choice of ordering of the cou-
pling. This agreement on coupling does not require a SRF,
but does require that Alice and Bob agree on a labeling
i 2 �1; . . . ; N� of each qubit.

We can now state and prove the result for classical
communication.

Proposition: The maximum number of classical mes-
sages that can be perfectly transmitted without a SRF is
equal to the number C�N� of SU(2) irreps in the direct sum
decomposition of the tensor representation of SU(2) on N
qubits.

Proof: We employ the following property of EN: for any
state j j;ri in the carrier space Hj;r of the irrep labeled by
j; r (where r is a label for the multiplicity), the state �j;r �
EN�j j;rih j;rj� � 1=�2j� 1�Ij;r is the completely mixed
state over that irrep. To transmit C�N� classical messages,
it is sufficient for Alice to encode these messages using
C�N� distinct states, one chosen from each irrep. Bob can
perform a measurement associated with the projector-
valued measure fIj;rg to distinguish the subspaces corre-
sponding to the direct sum decomposition. For Alice to
send an additional message, she must be able to prepare a
state j 0i that Bob can distinguish from the other states
with certainty. Thus, �0 � EN�j 0ih 0j� must be orthogo-
nal to �j;r for all j; r. There does not exist such a �0

because the supports of the �j;r span the entire Hilbert
space. �

To determine C�N�, we note that the multiplicity c�N�j of
each irrep in the direct sum decomposition is determined
by the dimension of the corresponding representation of
the symmetric group (the group of permutations of the N
027901-2
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systems) [9]. Thus, c�N�j can be calculated using Young
tableaux: it is the number of possible Young tableaux for a
Young diagram consisting of two rows, the first row con-
sisting of N=2� j columns and the second consisting of
N=2	 j columns. Using the hook lengths to calculate the
number of Young tableaux yields

c�N�j �
N!Q

hook lengths
�

�
N

N=2	 j

�
2j� 1

N=2� j� 1
: (5)

The total number of SU(2) irreps that appear in the direct
sum decomposition for N qubits is

C�N� �
XN=2
j�0

c�N�j �

�
N
N=2

�
: (6)

The number of classical bits that can be transmitted per
qubit using the above scheme is N	1log2C

�N�, which tends
asymptotically to 1	 �2N�	1log2N. Thus, in the large N
limit, one classical bit can be transmitted for every qubit
sent. Remarkably, this rate is equivalent to what can be
accomplished if Alice and Bob do possess a SRF.

In general, the states to be transmitted in the optimal
scheme for N qubits are highly entangled. (They include,
for example, singlet states of N qubits.) Such multipartite
entangled states are difficult to prepare in practice. How-
ever, as we now show, for the case N � 2 the required
entanglement is easily achieved using quantum optics, in
particular, using the polarization degree of freedom of a
photon.

When using an optical fiber for transmitting polarized
photons, Bob typically has no knowledge of the relation-
ship between Alice’s polarization axes and his own. Such
an optical fiber is an instance of a quantum channel
without a SRF. To demonstrate communication of a single
classical bit using such a channel, we can make use of
maximally entangled photon pairs (Bell states) produced
using parametric downconversion (PDC) [10]. For ex-
ample, by selecting two spatial modes (each with two
polarization states, jHi and jVi) from the PDC output,
one can prepare the antisymmetric Bell state j		i12 �
�1=

���
2

p
� � �jHi1jVi2 	 jVi1jHi2�. By performing a 90�

polarization rotation on one of the spatial modes, Alice
can also prepare the symmetric Bell state j�	i12 �
�1=

���
2

p
� � �jHi1jHi2 	 jVi1jVi2�. Thus, in our proposed

experiment, Alice prepares the antisymmetric state
j		i12 to encode the classical bit b � 0, and prepares
j�	i12 for b � 1.

Alice then transmits these photons to Bob, who per-
forms a projective measurement onto the antisymmetric
and symmetric subspaces of the two spatial modes in
order to retrieve the classical bit b. To perform this
measurement, Bob employs a linear optics Bell state
analyzer. An ideal Bell state analyzer that distinguishes
all four Bell states is impossible using only linear optics
and photodetectors [11]; however, such a complete mea-
surement is not required in this example. Using linear
027901-3
optics, one can distinguish the antisymmetric state from
the symmetric ones [12]. Such a measurement scheme
employs a 50=50 beam splitter that mixes the two spatial
modes, followed by photodetection at each output mode.
A coincidence detection (each photodetector detects one
photon) indicates the antisymmetric state, whereas the
detection of two photons at a single photodetector indi-
cates a symmetric state. Thus, using existing quantum
optics technology, it is possible to communicate classical
bits using entangled photon pairs without a SRF.

We now turn to the problem of quantum communica-
tion in the absence of a SRF. It is clear from Eq. (1) that a
single transmitted qubit can convey no quantum infor-
mation. However, in analogy to our classical communi-
cation results, multiple transmitted qubits do allow for
this possibility. Although quantum information can be
communicated only with imperfect fidelity using two
transmitted qubits, we now demonstrate that perfect fi-
delity can be achieved by using more than two qubits.

The key insight is that, because EN describes a collec-
tive decoherence mechanism, we can appeal to the tech-
niques of decoherence free subspaces (DFSs) [13]. For N
(even) transmitted qubits, we observe that the superoper-
ator EN leaves all j � 0 states in the direct sum decom-
position invariant. Thus, the j � 0 states span a DFS,
denoted HDFS. The number of j � 0 states is given by
the multiplicity dimHDFS � c�N�0 � � NN=2��1=�N=2� 1��.

For N � 2, there is only one j � 0 state: the Bell state
j		i. Since no quantum information can be encoded in a
one-dimensional subspace, two physical qubits are insuf-
ficient for the purpose of transmitting quantum informa-
tion with perfect fidelity. For N � 4, on the other hand,
there are two distinct j � 0 states, specifically,

j0Li �
1
2�j01i12 	 j10i12��j01i34 	 j10i34�; (7)

j1Li � �1=
���
3

p
��j0011i1234 � j1100i1234� 	 �1=2

���
3

p
��j01i12

� j10i12��j01i34 � j10i34�; (8)

where fj0i; j1ig is any orthogonal basis for the single-qubit
Hilbert space. The superoperator EN preserves the two-
dimensional subspace spanned by these states, i.e., this
subspace is a DFS.

Thus four physical qubits can encode a single logical
qubit. Single-qubit operations on this logical qubit are an
encoded representation of SU(2) that commutes with the
superoperator EN . The encoded generators are given by
Hermitian exchange operations (i.e., two-qubit permuta-
tions), which clearly do not require a SRF; for details of
the encoded SU(2) group as well as two-logical-qubit
coupling operations, see [13,14].

Noiseless subsystems [14] can be used to maximize the
amount of encoded quantum information protected from
the decohering superoperator EN . For example, it is pos-
sible to encode one logical qubit into only three physical
qubits. For a given number N of physical qubits, the
027901-3
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maximal subsystem is given by the irrep jmax with the
greatest multiplicity c�N�j . Asymptotically, this irrep is

found to be jmax �
����
N

p
=2, and the number N	1log2c

�N�
jmax

of logical qubits encoded per physical qubit in N physical
qubits behaves as 1	 N	1log2N, approaching unity
for large N. This remarkable result proves that
quantum communication without a SRF is asymptotically
as efficient as quantum communication with a SRF and
is the communication analog of ‘‘asymptotic universal-
ity’’ [14].

These results imply that Alice and Bob can share
entangled states in the absence of a reference frame. For
instance, Alice can prepare two quadruplets of physical
qubits in the state �1=

���
2

p
��j0L0Li � j1L1Li�, and send one

quadruplet to Bob. Since Alice and Bob can perform any
measurement in their respective logical qubit Hilbert
spaces, they can violate Bell inequalities despite having
no SRF. It also follows that such entangled states can be
used for quantum teleportation, which implies that the
latter does not rely upon the existence of a SRF either,
contrary to the claims of [15].

Another situation of interest is if Alice and Bob share a
partial reference frame, for instance, if they share only a
single direction in space rather than a full Cartesian
frame. In this case, the superoperator describing a partial
SRF corresponds to what the DFS community calls a
collective dephasing operation [16]. Here, Alice and Bob
can obviously transmit a classical bit using a single qubit.
To communicate a single logical qubit, it suffices to trans-
mit two physical qubits, and asymptotically, the ratio of
logical qubits to transmitted qubits is 1	 �2N�	1log2N.

We note that the encoding used in our schemes also
protects against channel noise that affects all qubits
identically [13]. If all transmitted qubits are sent close
together in space and time, such a description will be
appropriate. It follows, in particular, that noise in the
evolution of transmitted qubits, which is problematic for
the quantum clock synchronization protocol of [6], will
generally not cause errors in our communication schemes.
On the other hand, a noisy channel that affects the indi-
vidual transmitted qubits differently or that causes a loss
of information about the ordering of the qubits will be
problematic. However, concatenated encodings and quan-
tum error correction can be used to accommodate this
noise.

There remain many interesting questions about the role
of reference frames in quantum theory. For instance, it
appears that the availability of a reference frame for some
degree of freedom determines whether or not it is appro-
priate to assume a superselection rule for the comple-
mentary variable (the status of such rules has been the
subject of some controversy [17]). Another problem of
interest is to determine how these results generalize to
relativistic quantum mechanics, wherein reference
frames have particular significance.
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In conclusion, we have shown how to perform both
classical and quantum communication without a SRF,
thereby proving that a SRF is not a necessary requirement
for communication or distributed quantum information
processing. Also, we have shown that asymptotically this
communication can be performed as efficiently as if a
SRF were available. We have proposed an experiment to
demonstrate this principle using entangled photons.

This project has been supported by the Australian
Research Council and Macquarie University. T. R. is
supported by the NSA and ARO under Contract
No. DAAG55-98-C-0040. R.W. S. is supported in part
by NSERC of Canada.We acknowledge helpful discus-
sions with D. Berry, R. Mu�nnoz-Tapia, M. A. Nielsen,
D. J. Rowe, B. C. Sanders, S. van Enk, F. Verstraete, and
H. M. Wiseman.
*Electronic address: bartlett@ics.mq.edu.au
†Electronic address: rudolpht@bell-labs.com
‡Electronic address: rspekkens@perimeterinstitute.ca

[1] C. H. Bennett and G. Brassard, in Proceedings of the
IEEE International Conference on Computers, Systems,
and Signal Processing, Bangalore, India, 1984 (IEEE,
New York, 1984), p. 175.

[2] C. Macchiavello and G. M. Palma, Phys. Rev. A 65,
050301(R) (2002).

[3] A. Peres and P. F. Scudo, Phys. Rev. Lett. 86, 4160 (2001);
E. Bagan et al., Phys. Rev. A 63, 052309 (2001).

[4] A. Peres and P. F. Scudo, Phys. Rev. Lett. 87, 167901
(2001); E. Bagan et al., Phys. Rev. Lett. 87, 257903
(2001).

[5] T. Rudolph, quant-ph/9902010; A. Acin et al., Phys. Rev.
A 64, 050302(R) (2001).

[6] R. Jozsa et al., Phys. Rev. Lett. 85, 2010 (2000); E. A.
Burt et al., Phys. Rev. Lett. 87, 129801 (2001); R. Jozsa
et al., Phys. Rev. Lett. 87, 129802 (2001).

[7] M. Dickson, quant-ph/0102053.
[8] C.W. Helstrom, Quantum Detection and Estimation

Theory (Academic, New York, 1976); C. A. Fuchs,
Fortschr. Phys. 46, 535 (1998).

[9] W. Fulton and J. Harris, Representation Theory: A First
Course (Springer-Verlag, Berlin, 1991).

[10] P. G. Kwiat et al., Phys. Rev. Lett. 75, 4337 (1995).
[11] N. Lütkenhaus et al., Phys. Rev. A 59, 3295 (1999).
[12] H. Weinfurter, Europhys. Lett. 25, 559 (1994); S. L.

Braunstein and A. Mann, Phys. Rev. A 51, R1727
(1995); M. Michler et al., Phys. Rev. A 53, R1209 (1996).

[13] P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 3306
(1997); P. Zanardi, Phys. Rev. A 63, 012301 (2000).

[14] E. Knill et al., Phys. Rev. Lett. 84, 2525 (2000); J. Kempe
et al., Phys. Rev. A 63, 042307 (2001).

[15] S. van Enk, J. Mod. Opt. 48, 2049 (2001).
[16] L.-M. Duan and G.-C. Guo, Phys. Rev. A 57, 737 (1998).
[17] Y. Aharonov and L. Susskind, Phys. Rev. 155, 1428

(1967); G.-C. Wick et al., Phys. Rev. D 1, 3267 (1970).
027901-4


