
P H Y S I C A L R E V I E W L E T T E R S week ending
11 JULY 2003VOLUME 91, NUMBER 2
Locally Critical Point in an Anisotropic Kondo Lattice
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We report the first numerical identification of a locally quantum critical point at which the criticality
of the local Kondo physics is embedded in that associated with a magnetic ordering. We are able to
numerically access the quantum critical behavior by focusing on a Kondo-lattice model with Ising
anisotropy. We also establish that the critical exponent for the q-dependent dynamical spin suscepti-
bility is fractional and compares well with the experimental value for heavy fermions.
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In this Letter we demonstrate that, for an anisotropic
version of the Kondo-lattice model, the EDMFT equa- where the Weiss field ��1 characterizes the boson bath,
How to properly describe heavy fermion metals near
quantum critical points (QCPs) is a subject of intensive
current research. It is well established experimentally [1]
that these systems are prototypes of non-Fermi liquid
metals [2,3]. In a number of cases, striking deviations
from the commonly applied T � 0 spin-density-wave
picture (usually referred to as the Hertz-Millis picture)
[4] have been seen. In particular, experiments [5–9] have
shown that the spin dynamics in the quantum critical
regime can display fractional exponents essentially
everywhere in the Brillouin zone, as well as !=T scaling.
These features are completely unexpected in the Hertz-
Millis picture, which corresponds to a Gaussian fixed
point, and they directly imply the existence of quantum
critical metals that have to be described by an interacting
fixed point. A number of theoretical approaches are being
undertaken to search for such non-Gaussian quantum
critical metals [10–13].

Here we are concerned with a new class of QCP
[10,11], which has properties that bear a close similar-
ity to those seen experimentally. The key difference
between the traditional Hertz-Millis QCP and this
locally critical point (LCP) is that, in the latter, the local
Kondo physics itself becomes critical at the antiferro-
magnetic ordering transition. Such a LCP was shown to
arise in an extended dynamical mean field theory
(EDMFT) of a Kondo-lattice model. The latter was
mapped onto a self-consistent impurity model—the
Bose-Fermi Kondo model—which in turn was analyzed
using a renormalization-group (RG) approach, based on
an � expansion.

One of the key issues is whether the destruction of the
Kondo effect is accompanied by a fractional exponent in
the frequency/temperature dependences of the dynamical
spin susceptibility. The fractional nature of the exponent
has been seen experimentally, and is characteristic of a
non-Gaussian magnetic quantum critical metal. The cal-
culation of this exponent requires a detailed numerical
study of the quantum critical behavior.
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tions can be solved using a quantum Monte Carlo (QMC)
method [14], including at its QCP. We also analyze them
using a saddle-point approximation [15,16].

We consider the following Kondo-lattice model:
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Here, tij specifies the band structure (�k) and density of
states [�0���] of the conduction c electrons, JK describes
the on-site Kondo coupling between a spin- 12 local mo-
ment Si and a conduction-electron spin density sc;i and,
finally, Iij denotes the exchange interactions between the z
components of two local moments.

We study this model using the EDMFT approach [17–
19], which maps the model onto a self-consistent aniso-
tropic Bose-Fermi Kondo model:
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where the parameters Ep, wp, and g are determined by a
set of self-consistency equations. The latter are dictated
by the translational invariance:
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where Gloc�!� is the local conduction-electron Green
function and �loc��� � hT�Sz���Sz�0�i is the local spin
susceptibility. The conduction-electron and spin self-
energies are 
�!� and M�!�, respectively, with

M�!� � ��1
0 �!� �

1

�loc�!�
; (4)
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It has been recognized [10,11] that the solution depends
crucially on the dimensionality of the spin fluctuations,
which enters through the RKKY-density-of-states:

�I��� �
X
q

���� Iq�: (6)

In this Letter, we will consider the following specific
form, characteristic of two-dimensional fluctuations:

�I��� � �1=2I���I � j�j�; (7)

where � is the Heaviside function. Enforcement of the
self-consistency condition on the conduction-electron
Green function is not essential for the critical properties
discussed here, provided that the density of states at the
chemical potential (�) is finite; the corresponding bath
density of states

P
p��!� Ep� � N0 is also finite.

If, instead of the general form Eq. (6) we were to
choose a semicircular RKKY-density-of-states (represen-
tative of the 3D case), our EDMFT equations would
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become essentially the same as those of Refs. [14–16,20].
To cast the impurity model in the form of a functional

integral, we adopt a bosonized representation of the fer-
mionic bath, cy� � Fy
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���������
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where [21] X&' � j&ih'j are the Hubbard operators and
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Here, H 0��s;�c� describes the bosonized conduction-
electron bath, Sx � �X"#F

y
# F" � H:c:�=2, sz �

�d
s=dx�x�0�1=2!� is the spin density of the conduction-
electron bath, � � �
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2�. (� and �z can vary independently

when we allow the longitudinal and spin-flip parts of the
Kondo interaction to be different.) Equation (8) describes
an Ising spin in a transverse field �, with a retarded self-
interaction that is long ranged in time [14]. The associated
partition function is
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Here, gc � �1=N0�
ln�2=N0JK��
�1 and Kc comes from

integrating out the electron bath (,c � �2
zN2

0),

K c�i!n� � ,cj!nj: (10)

To first gain qualitative insights, we carry out a saddle-
point analysis of Eq. (9). This analysis is formally exact
when the number of components for the field n is gener-
alized from 1 to N and a large-N limit is subsequently
taken [15,16]. At the saddle-point level, i* � *0, and

�loc�i!n� � 
*0 � ��1
0 �i!n� � ,cj!nj �!2

n=gc�
�1:

(11)

There is also a constraint equation that reads
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�
� 1=4: (12)

The QCP is reached when the static susceptibility at the
ordering wave vector Q, specified by IQ � �I, becomes
divergent. Given that [17–19]

��q; !� � 
M�!� � Iq�
�1; (13)

it implies M�! � 0� ! I. This, in turn, establishes that
�loc�! � 0� is also divergent [through Eqs. (3) and (7)],
and that *0 � ��1

0 �0� � I [from Eqs. (4) and (11)]. The
self-consistency Eq. (3) then simplifies and becomes

��1
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�2I�loc�!��:

(14)
We immediately see, from Eqs. (11), (12), and (14), that
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are self-consistent to the leading order.
Since the !-dependent part of M�!� is subleading

compared to both 1=�loc�!� and the !-dependent part
of ��1

0 �!�, we can determine the spin self-energy entirely
in terms of the leading order solution for �loc�!� in
Eq. (16) and the second equality in Eq. (14):

M�!� � I � 2I��i!=��&; (17)

with the exponent & � I=�. Now, to satisfy the first
equality of Eq. (14), we need to add subleading terms to
the Weiss field and replace Eq. (15) by

��1
0 �!� � I � 2�ln�1

�
�

�i!

�
�c��i!�&: (18)

Equation (11) then leads to

1

�loc�!�
� 2�ln�1

�
�

�i!

�
�c0��i!�& � i,c!: (19)

At the saddle-point level, however, the critical amplitudes
for the local susceptibility are pinned to the initial pa-
rameters of the Weiss field [22]. The self-consistent
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amplitudes of �loc are not determined from the leading
terms alone and c0 � c; a fractional & cannot emerge. We
now show that a fractional & does arise [22] in the
physical case corresponding to Eq. (8).

We have directly studied the physically relevant case
[Eq. (8)] numerically using the QMC algorithm of
Refs. [14,23]. Starting from a trial ��1

0 ���, we compute
�loc���. A new ��1

0 ��� is then obtained from the self-
consistency Eq. (3), and the process is repeated until
convergence is achieved. The results reported below are
obtained for ,c � ! [cf. Eq. (10)]. In this special case, the
model can be solved exactly at I � 0, providing a check
on the QMC algorithm [14]. We choose N0� � 0:19
such that the bare Kondo scale (the inverse of the static
local susceptibility at I � 0), N0T

0
K � 0:17, is well above

the lowest temperature attainable in our simula-
tions, Tmin � 10�2 T0

K. The number of Trotter time slices
used varies between 64 (for the higher temperatures) and
512 (for the lowest one). We perform between 104 and 106

MC steps per time slice and between five and 20 self-
consistency iterations. The numerical error is controlled
by the last step. We estimate that the calculated suscepti-
bilities are accurate to within 3%.

Figure 1 shows the temperature dependence of
�loc�! � 0� for several values of I. The results exhibit
very little I dependence above T � 0:1 T0

K. At lower tem-
peratures, a saturation of �loc at an I-dependent value is
seen in the five lower curves. The two upper curves show
no saturation; instead, the results are consistent with a
logarithmic T dependence as shown in the inset of Fig. 1,
which contains data at many more points of temperature.

To interpret these numerical results, and inspired by
the arguments developed earlier, we use the following
fitting function for �00

loc�!�:

�00
loc�!� �

&
2I

���� j!j�
!
2
tanh

�
!
� �

�
; (20)
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FIG. 1. Static local susceptibility vs T for I=T0
K � 0 (+), 0.75

(*), 1 (�), 1.0625 (�), 1.125 (�), 1.1875 (�), and 1.25 (4). The
solid lines are the fits described in the text. Inset: results for
I � 1:1875 T0

K, with ��T � 0� � 5� 10�3.
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where &, �, and � are fitting parameters that may depend
on I and T. The parameter � is a measure of the proximity
to the QCP as Eq. (20) implies that ��1�Q� � 2I�& for
�� 1. By Hilbert transforming Eq. (20) we obtained an
analytic expression for �loc�i!n� that we used to analyze
the numerical results.

In the parameter region T < 0:1 T0
K, 1< I=T0

K < 1:25
all our data can be fitted with a single value of & �
0:72� 0:01 and � � 1:54 T0

K. The error bar represents
the amplitude of variation of & when it is allowed to
freely adjust for each value of I and T in the critical
region. The fits are of excellent quality as shown in
Fig. 2 where we display results obtained for I �
1:1875 T0

K at T � 0:011 T0
K. The fitted values of

�loc�!n � 0� are represented by the solid lines in Fig. 1.
We found in addition that, within this range of values of I
and T, the fitted ��I; T� can be described by the phenome-

nological expression � / 
�0�I� �
�������������������������������������
�2
0�I� � 4�T=T0

K�
2

q
�=2

that can be derived using Eq. (20) in the normalization
condition (12). The parameter �0, that decreases linearly
with increasing I, allows us to determine the location of
the QCP from the criterion ��Ic;T � 0� � 0: Ic�1:2T0

K.
We have also computed ��1�Q�, the inverse of the static

peak susceptibility. Figure 3 shows that ��1�Q� / �0:72

for I and T in the quantum critical regime. Our numerical
value for & [24] is very close to that seen [5] in the
Isinglike system CeCu6�xAux.

The region I > Ic will be discussed elsewhere [25].
We stress that a simultaneous treatment of the Kondo

and RKKYcouplings is crucial for our conclusion that the
LCP solution is indeed self-consistent.

Some questions have recently been raised concern-
ing the matching of the logarithmic terms in the LCP
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FIG. 2. Matsubara-frequency dependence of �loc at T �
0:011 T0

K and I � 1:1875 T0
K. The solid line is the fit obtained

from the Hilbert transform of Eq. (20). Inset: the same data on
a logarithmic plot with the point at !n � 0 excluded. The
dashed line is the predicted critical behavior [10,11] with & �
0:72 and � � 1:54 T0

K .
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FIG. 3. Scaling plot of ��1�Q� near the QCP.
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solution [11,26] in the isotropic model. Burdin et al. [26]
carried out large-N and numerical analyses for zero
Kondo coupling. They found that the spin liquid (SL)
phase [27,28] is unstable at low T and conjectured that
the LCP solutions may not be self-consistent either. Since
the SL phase corresponds to the stable fixed point of the
effective impurity model [29] this analysis covers a dif-
ferent parameter regime and is complementary to ours.
By directly accessing the unstable fixed point, our results
establish that the logarithmic terms are self-consistent
in the Ising case. Whether numerical and analytical (be-
yond RG) studies in the isotropic case will yield a self-
consistent LCP similar to what we have shown here for
the anisotropic model is left for future work.

In summary, we have numerically identified a LCP
solution in an anisotropic Kondo-lattice model. The ex-
ponent for the q-dependent dynamical susceptibility is
fractional and is close to the experimental value.
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