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Critical Behavior of Thermal Relaxation near a Breakdown Point
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At a composition far above the percolation threshold, the resistance of a composite sample increases
with time due to Joule heating as a constant current of a sufficiently large value is passed through the
sample. If the current is less than a certain breakdown current (Ib) the resistance eventually reaches
a steady value with a characteristic relaxation time �h. The latter diverges with current I as �h �
�1� I2=I2b�

�z. The value of the exponent z displays large fluctuations leading to unusual scaling of the
relaxation time. It is shown that the results lead to important conclusions about the nature of breakdown
phenomena.
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points in thermodynamic systems. The relaxation times laxation during cooling from a hot steady state was also
Breakdowns or fractures in random systems form an
important class of nonthermodynamic phase transitions
[1]. Much of the effort [1–9] to understand such irrevers-
ible phenomena naturally uses the framework already
developed for thermodynamic critical phenomena al-
though descriptions remain far from complete. Con-
sider, for example, the order of a breakdown transition.
Zapperi et al. [5] have suggested that the latter is first
order as a function of the external field. The relevant
‘‘order parameter,’’ elastic constant, or conductivity suf-
fers a discontinuous change from a finite value to zero at a
breakdown point. Using a somewhat different model,
Andersen et al. [6] supported the idea of a first-order
transition but only at small disorder. They predicted a
change to a second-order transition at higher disorder,
thus indicating the presence of a tricritical point. On the
experimental side, some recent results on electrical fail-
ure in composites suggest rather conflicting scenerios.
When a sufficiently large current I is passed through a
composite sample (a random binary mixture of a con-
ductor and an insulator [10]) with the conducting fraction
p typically far above the percolation threshold pc � p,
the Joule heating causes the sample resistance to increase.
For currents greater than the breakdown current Ib, heat-
ing eventually leads to an irreversible electric breakdown.
It was found [8] that when a constant current I > Ib is
passed the resistance of such a sample increases as a
power of time, R� ��h�I� � t��0:65. The relaxation time
(or time to failure) �h also exhibits a critical behavior (see
below). However, measurements [9] starting with small
currents show that the sample conductance drops to zero
as soon as the current equals or exceeds the breakdown
current, thereby signaling a first-order transition.

Clearly, it will be useful to obtain further information
on the transition. In this Letter, we report the results of
our dynamic measurements of thermal relaxation using
currents less than, but up to, the breakdown current in
composite samples with varying amounts of disorder. The
observed relaxation behavior is reminiscent of the well-
known phenomena of slowing down [11] near critical
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also exhibit an unusual scaling relation due to a strong
dependence on disorder. The present results together with
the earlier ones [8] constitute, to our knowledge, the first
full description of a dynamic breakdown phenomenon
both above and below the critical parameter. We examine
below various features including the interplay of disorder
and breakdown dynamics, which becomes significant
particularly in the regime of weak disorder pc � p� 1.
Few related experimental works include investigation
of avalanche dynamics [12] and strain-relaxation mea-
surements in metal networks near the percolation thresh-
old [13].

Measurements were performed in composites of car-
bon and wax (C-W) under a constant dc current condition
at room temperature and the sample resistance was moni-
tored as a function of time during heating. The prepara-
tion and characterization of the system have been
described earlier [14]. pc in the C-W system is 0.76%
(by volume). In the tunneling regime [15] close to pc,
the resistance decreases with bias. It has been recently
found out that there exists a Joule regime in, or a con-
ducting fraction pJ above, which the resistance always
increases with bias [9]. The nominal carbon fractions of
the samples ranging from 4.5% to 10% were above or near
pJ which is approximately 4.5% [16]. Samples prepared
with larger carbon fractions were mechanically unstable.
On the other hand, samples with lower carbon fractions
had a tunneling effect offsetting the effect of Joule heat-
ing (see Fig. 1 of Ref. [9]). The geometry of current flow in
a cylinderical sample is illustrated in the inset in Fig. 1.
Various properties of the samples used in the present work
are given in Table I. In a typical measurement, the current
corresponding to a certain value I would be turned on at
time t 	 0 and the bias across the sample would be
measured at an interval of time (usually 250 msec) until
it reached a steady value when a balance between dissi-
pation and generation of heat within the sample is estab-
lished. The sample was then allowed to cool for up to 2 h
before measurements would be repeated with an another
current, not exceeding the breakdown current. The re-
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FIG. 1 (color online). A typical resistance relaxation curve
(a) of a cylindrical sample (No. 3) heated by passing a constant
current of 68.5 mA. Many data points have been omitted for
clarity. The solid line is a fit to a simple exponential �=�o 	
1:397� 0:397 exp��t=�h�. The same data are also shown in
log-linear plot (b). The slope of the straight line yields the
negative inverse of the relaxation time �h 	 348 s. The inset is
an assembly diagram showing copper foils (c) used as elec-
trodes and attached to the sample (s) with silver paints.
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measured. It exhibited an anamalous behavior. This will
be reported elsewhere.

Figure 1 shows a typical relaxation curve (a) during
heating, obtained from a cylinderical sample (No. 3). The
curve is well described by a simple exponential process
indicated by the solid line in Fig. 1. It may be recalled
[17] that the relaxation function f�t� is almost universally
given by f�t� � exp���t=����. Here t is time, � is a
relaxation time constant, and � is an exponent. The ex-
TABLE I. Various properties of the samples used. p is the
carbon fraction by volume (%). �o and �ho are the resistivity
and relaxation time at zero current. Ib is the breakdown current
and z is the exponent in Eq. (1). Each number in the last row is
the linear-correlation coefficient of the respective column
variable and z.

Sample Height �o �ho Ib
No. pa (mm) (
cm) (sec) (mA) 103 z

1 7.5 6.0 567 495 31.5 175� 7
2 4.5 4.1 561 145 19.2 187� 5
3 7.5 4.1 280 168 73 300� 14
4 4.5 2.7 214 455 83.1 76� 3
5 7.5 2.8 191 113 112 180� 8
6 7.5 4.2 188 156 95 150� 11
7 7.5 10
 4
 2b 15.2 67 18.7 230� 7
8 10 8.3 5.26 194 135 173� 8

�0:05 �0:56 �0:22

aNominal value.
bThis sample is ribbon shaped but all other samples are cylin-
ders of 10 mm diameter.
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ponential relaxation corresponding to � 	 1 occurs
mostly in simple systems such as homogeneous ordered
solids [18]. A simple exponential in the present case may
be attributed to a long-time relaxation behavior. In sys-
tems with characteristic time scales such as percolating
networks, the relaxation function may change from a
stretched exponential at short times to a simple exponen-
tial at long times [13,19]. For samples with large p 
 pc
such as the ones used here, the crossover times should be
quite small. Close to pc, � was determined to be about 0.8
[13] in elastic relaxation in dilute metal foils, and about
0.4 [20] in voltage relaxation in the same system as the
present one.

The relaxation time in several samples of different
compositions and dimensions (see Table I) against current
are shown in Fig. 2. �h of a sample was found to diverge as
a power law

�h 	 �ho j �j�z: (1)

Here, �ho is a prefactor, � 	 �I2=I2b � 1�< 0, and z is a
dynamical exponent. �ho, Ib, and z were treated as fitting
parameters and its values are listed in Table I. �ho is really
the relaxation time at zero current. It depends on sample
dimensions [see Eq. (2)] but, more importantly, mono-
tonically increases with disorder. In fact, �ho diverges as
p approaches pc. Such disorder-induced divergence of
relaxation time has been qualitatively observed by
Ghosh et al. [13]. The breakdown current Ib scales with
Ro as Ib � R�0:44

o [9] with a high degree of scatter. Ro is
the resistance at zero current.

The exponent z thus determined was not a constant
even within experimental uncertainties of 5%. It exhibits
an unusual sample-to-sample fluctuation as seen in Fig. 3
where it is plotted against a quantity r as a measure of
disorder. (It is not practical to use p due to uncertainties in
its values.) r is defined as the ratio of the zero-current
10 100
100

200

300

400

τ h
(s

)

I(mA)

2

3

8

7

6

1

4

5

X0.5
X0.6

X1.5

FIG. 2. Relaxation time vs current in various samples as in
Table I. Some data have been translated vertically by factors as
marked.
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sample resistivity and the resistivity of the pure conduct-
ing phase (� 10�2 
 cm). r is 1 at zero disorder (p 	 1)
and increases monotonically with disorder as p decreases
from 1. Within the range of disorder (2 orders of magni-
tude) investigated in this work, the exponent has an aver-
age value of 0:184� 0:06, i.e., 33% uncertainties. The
highest value (0.3) is about 4 times the lowest one (0.076).
Without these two extreme values, uncertainties reduce to
17% which is still beyond the experimental error. Clearly,
the relaxation exponent z for I < Ib is disorder dependent.
In fact, one can classify the breakdown-related expo-
nents, both theoretical and experimental, into two groups:
(i) disorder dependent and (ii) disorder independent or
‘‘universal.’’ Examples of the first group include, besides z
of this work, the ones associated with broken bonds in
lattice models [21] while those in the second group in-
clude the size exponents in Table I of Ref. [3], the rough-
ness exponent [21], and the relaxation exponent z for
I > Ib (see below). A disorder-dependent exponent is
usually derived from measurements involving a single
sample, and, hence, fluctuations in its values possibly
reflect lack of self-averaging property.

To see how well Eq. (1) represents the relaxation time
data, one notes that plotting ��h=�ho�

1=z against I2=I2b
should lead to data collapse. This is indeed seen in Fig. 4
(open symbols, I2=I2b < 1). The solid line is a fit to (1),
which is excellent even at low currents. Thus, Eq. (1)
holds not only near Ib but also for the entire range of
current I < Ib. The goodness of the data collapse near Ib
is highlighted in the plot in the inset. Straight lines
have slopes of unity. To complete the description of the
dynamic breakdown, time-to-failure data (closed sym-
bols) obtained above the breakdown point (� > 0) by
Lamaignere et al. [8] are also shown in the figure. In
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FIG. 3. The exponent z vs the disorder parameter r 	
�o=�carbon for I < Ib. The point P at (1; 1) is a theoretical one
corresponding to the pure conductor. The three curves indicate
some possibilities for z approaching 1 at P. See text for further
discussion.
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this case, �ho is fixed arbitrarily to display the data within
the graph and cannot be interpreted as the relaxation time
at zero current as in the case � < 0. The dashed line is
again a fit to (1) with z 	 1. The single function fits all the
data reasonably well whereas previously, different func-
tions were used to fit different ranges of data. The func-
tion �h � �I=Ib � 1��2 as considered in Ref. [8] near Ib is
also shown in Fig. 4 (dotted line). As seen, it does not fit
the whole set of data. It is important to note that the value
of the exponent z (i.e., 1) for � > 0 is independent of
disorder in contrast to the varying exponent for � < 0.
This is ensured by Eq. (1) and the requirement that �h
must vary as I�2 at large currents [8] as dissipation of
heat becomes negligible at large currents.

It is now useful to summarize characteristics below and
above the breakdown point I 	 Ib. (i) For � < 0, the
resistance ratio R=Ro (see, for example, Fig. 1 of
Ref. [9]) smoothly increases with current to a limiting
value (or breakdown ratio) � � 1:5 [16] at � 	 0. R 	
R�t ! 1� is the steady resistance at a given current. It is
best fitted by an expression R=Ro 	 �� a1�� a2�2 �
a3�3 that has a finite slope a1 at � 	 0. For � > 0, there is
no steady state. On the other hand, �h diverges as a power
law of � on both sides. Thus, we have a situation where a
susceptibility (e.g., resistance) and a dynamic response
variable (e.g., relaxation time) behave differently with the
driving current in the same system and range of disorder.
(ii) z is not the same on both sides as discussed above.
This is in contrast to equality of the exponents on both
sides, which is expected from scaling hypotheses in both
10−3 101
10−3

0.01 0.1 1 10

1

10

100

  

ε

(τ
h/τ

ho
)−1

/z

2
3
4
5
6
7
8

( τ
h/ τ

ho
)1/

z

(I/I
b
)2

FIG. 4 (color online). Scaling behavior of relaxation time
below and above the breakdown point at I 	 Ib. The solid
and dashed lines are fits to ��h=�ho�

1=z 	 �����1, respectively.
The data corresponding to solid symbols are from Ref. [8].
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static and dynamic critical phenomena in thermodynamic
systems. (iii) While the scaling in Fig. 4 is itself an
expression of ‘‘universality’’ [3], the fluctuations and
variation (see below) in z for � < 0 renders the notion
of a universality class untenable. (iv) At � < 0, both R and
�h are reversible with respect to current. This rules out
any local breakdown before the global breakdown occurs.
Any irreversible change in the microstructure should also
lead to irreversibility in those quantities. This is incom-
patible with the picture that emerges in breakdown mod-
els with quenched disorder [2–7,22] where the global
breakdown is preceded by increasing bursts of irrevers-
ible bond breaking. The composite samples can be con-
sidered belonging to a system with quenched disorder for
� < 0, and a system with annealed disorder for � > 0. In
view of all these, it is difficult to avoid the conclusion that
the usual thermodynamic classification of phase transi-
tion is inadequate to describe breakdown phenomena.

The presence of disorder is expected to have a profound
effect on the breakdown processes. One of its manifesta-
tions lies in the conceptual difficulties of taking the limit
of disorder going to zero [6]. This is aptly illustrated in the
present case. Let us first consider divergence of the re-
laxation time in a homogeneous medium corresponding
to zero disorder. In fact, it has long been discussed [23],
albeit couched in the language of stability. The Joule
heating under a constant current I in a medium with a
positive temperature coefficient of resistance � leads to
either a steady state or breakdown depending on whether
the heat generated is removed quickly enough or not. Full
solutions of heat flow have been obtained in some regular
geometries [23] where �h is given by

�h � l2��a� bI2��1 � l2�1� I2=I2b�
�1; (2)

where I2b 	 �a=b, � is thermal diffusivity, and l is the
smallest distance for flow of heat. a; b are constants that
depend on the boundary conditions and various material
constants including �. Clearly, z 	 1 in the case of zero
disorder (p 	 1). In passing, let us note that according to
Eq. (2), I2 rather than I is the proper variable to use in
problems involving the Joule heating. Consideration of
temperature-coupled resistance is an essential ingredient
in obtaining (2). Its absence in the dynamic fuse model of
Sornette et al. [4] gives rise to a relaxation time indepen-
dent of current.

As the disorder is reduced (p ! 1), the relaxation ex-
ponent increases from �0:18 to 1. Thus, the dependence
of z on disorder is much stronger than the fluctuations in
its values suggest. Presently, there is no theory of z for
p < 1. An interesting question arises at this point as to
how z from a lower value at higher disorder would ap-
proach 1 at point P in Fig. 3. Three possible curves are
shown schematically. Curve a is intuitive and has a zero
slope at P. This means that the system having a small
disorder can be simply considered as a homogeneous one
025702-4
with an effective thermal diffusivity. This may be pos-
sible if the melting point of the conductor is less than that
of the insulating matrix. Curve c corresponds to the
situation where even a slight disorder leads to an abrupt
fall in z. This may happen if the melting point of the
conductor is greater than that of the insulating matrix.
Curve b has a finite slope at P. Clearly, further theoretical
efforts are necessary for the understanding of z as a
function of disorder. A similar problem [9] concerning
the breakdown ratio � exists near p� 1.

In conclusion, a detailed description of the dynamic
electric breakdown driven by external current, both below
and above the breakdown current, was presented. It was
shown that the classification of thermodynamic phase
transitions is inadequate for breakdown transitions. The
present models having quenched disorder lack reversibil-
ity found in composites.
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