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Lattice Trapping Barriers to Brittle Fracture
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We present a multiscale simulation of a crack in silicon under tensile loading that is consistent with
experiment; fracture is brittle with a modest lattice-trapping energy barrier to crack propagation. Our
multiscale molecular-dynamics simulation has a tight-binding description of bonding near the crack tip
embedded in an empirical-potential (EP) region. Forces on atoms in the tight-binding region are
computed using a Green’s function method. Comparing our multiscale simulation with EP simulations
shows that the EP models severely overestimate lattice trapping, explaining the failure of the Griffith
criterion and the dramatic differences in crack morphology. A two-length-scale model for the lattice-
trapping energy barrier correctly predicts the critical load for brittle fracture. We argue that lattice
trapping plays an important role in the brittle-to-ductile transition.
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FIG. 1. Snapshots 2 ps into simulations of crack propagation
using the DCET MD method (a) and the SW EP (b). White
signifies atoms simulated using the EP, gray signifies atoms in
the TB region, and black signifies atoms at the interface
between the two regions. The temperature is 200 K and the
criterion prediction [15], suggesting significant lattice
trapping. Significant lattice trapping was also observed

loading G is 1.51 or 11:2 J=m2 (applied strains of 1.7% and 5%)
for the DCET MD and SW simulations, respectively.
The Griffith criterion predicts the critical load for
brittle fracture by balancing the elastic energy released
by crack advance against the energy of the newly formed
surface [1]. The atomic nature of crystalline materials
leads to an effective periodic potential for the crack tip
which may include energy barriers that can arrest crack
motion [2]. These lattice trapping barriers are analogous
to Peierls barriers [3] to dislocation motion [2]. Lattice
trapping suppresses brittle fracture up to loads larger than
the Griffith critical load [4]. If lattice trapping is suffi-
ciently large, other failure mechanisms, such as disloca-
tion nucleation and plastic deformation, could become
active before brittle fracture can occur. Studies of lattice
trapping based on simplified model potentials suggest
that its magnitude can vary from negligible to significant,
depending on the lattice and details of the potential [5].
Since fracture experiments together with the Griffith
criterion are often used to determine surface energies
[6,7], significant lattice trapping would lead to a signifi-
cant error in the deduced surface energy.

Experiments on silicon at low temperatures show
brittle fracture at a load consistent with the Griffith
criterion [8]. However, the uncertainties in the experi-
mentally applied load and the theoretically derived sur-
face energy make the role of lattice trapping in silicon
uncertain. Quasistatic-first-principles simulations that
make significant approximations of the near-crack-tip
displacement field predict small but significant lattice
trapping [9,10]. Simulations of fracture based on empiri-
cal potentials (EPs) are not conclusive. When used to
simulate fracture, many EPs that accurately model
silicon, e.g., the Stillinger-Weber (SW) [11] and the envi-
ronment dependent interatomic potentials (EDIP) [12],
predict ductile fracture, contradicting experiment [13,14].
A recent report of brittle fracture in an EP simulation of
silicon shows fracture significantly above the Griffith
0031-9007=03=91(2)=025501(4)$20.00 
for a brittle but otherwise unphysical modification of the
SW potential, referred to as IMSW [16,17].

Here we use a tight-binding (TB) total-energy method
that describes covalent bonding more accurately and is
practical for molecular dynamics (MD) simulations. We
present a simulation of fracture using an atomistic multi-
scale method that dynamically couples EPs and TB
(DCET) [18]. As shown in Fig. 1, this simulation yields
dynamic brittle fracture in silicon. The onset of fracture
2003 The American Physical Society 025501-1
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FIG. 2. Crack speed as a function of loading for DCET MD,
SW, EDIP, and the experiment of Ref. [8] (solid circles).
Loading is measured in terms of the energy release rate scaled
to the Gc for each model or experiment (see text). The onset of
IMSW (not shown for clarity) is at �2:1.

TABLE I. Griffith critical load, measured lattice trapping,
and lattice-trapping-model parameters for Si (111) fracture.

TB SW IMSW EDIP

Gc (J=m2) 2.0 2.8 2.8 2.2
R 1.09–1.16 1.44–1.56 1.39–1.52 1.65–1.73

sbb (Å) 2.70 1.40 1.40 0.77
seq (Å) 1.38 2.31 2.00 2.34
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occurs nearly at the Griffith critical load, suggesting that
lattice trapping is small.

Figure 1 shows remarkable differences in fracture mor-
phologies between otherwise accurate models of silicon.
We show that lattice trapping underlies these differences.
The ductile models are dominated by lattice trapping up
to the critical load at which dislocations begin to form
and ductile failure begins. In this way, brittle fracture is
entirely suppressed by lattice trapping.We present a model
that decomposes the energy barrier into bond breaking
and elastic relaxation contributions. The model reprodu-
ces the large barriers we find by direct calculation for our
EP simulations and predicts a tiny barrier for DCET
simulations, consistent with our observation of fracture
nearly at the Griffith criterion. The lattice trapping barrier
is controlled by the interplay of two length scales which
naturally emerge from our model, a result presaged by the
analysis of Curtin [5,19]. An understanding of both scales
is needed to predict the behavior of a material, whether
real or simulated.

Figure 1(a) shows the partitioning of the system in our
DCET simulation into a far field region and a crack-tip
region, dynamically coupled through an interface region.
Far from the crack tip, elastic stress fields are small and
atomic motion is simulated using the EDIP EP [12,20].
Near the crack tip, stress concentration ultimately leads to
bond breaking and bonding is described using a TB model
[21]. Forces on atoms in this region are computed using a
Green’s-function-based total-energy method [22]. This
method does not require artificial termination of dangling
bonds and the computational effort scales linearly with
the number of atoms. The interface atoms experience
forces computed using the EP; constrained Green’s func-
tion matrix elements involving orbitals around these
atoms comprise the boundary conditions for the elec-
tronic system [22].

The simulated system consists of a 3� 25� 60 super-
cell of a 12 atom �12

1
20� � �111� � �12

1
2 1� unit cell (these

directions define x, y, and z, respectively). Periodic
boundary conditions are used along x and z, while the
boundaries along y, the tensile loading direction, are
fixed. A seed crack, with �111� faces and a h110i crack
front, extending through the entire system along x and
198.6 Å (half the system size) along z is introduced. The
isotropic elastic displacement field for a thin crack in an
infinite plate [23] provides the mechanical loading of the
sample. The TB region, which extends �17 
A along y and
�55 
A along z, includes one of the tips of the seed crack,
is fixed during the simulation, and is surrounded by
a 6.5 Å transition layer. The MD time evolution is com-
puted using the velocity Verlet algorithm [24] with a 1 fs
time step.

A visualization of a DCET MD simulation [Fig. 1(a)]
shows brittle fracture. As the crack tip advances, it re-
mains atomically sharp and newly generated surface is
atomically smooth. There is no sign of disorder, disloca-
025501-2
tions, or a plastic zone. The analogous simulation using
only SW [Fig. 1(b)] shows a blunt crack tip surrounded by
a disordered region, consistent with ductile fracture.

Crack speeds as a function of applied load from our
simulations appear in Fig. 2 together with the result of the
experiments of Ref. [8]. The load is measured in terms of
the energy release rate G, which is the elastic energy
released per unit length advance of the crack tip. To
properly compare the onset of fracture in different mod-
els, we normalize the load by the critical energy release
rate at the Griffith criterion Gc tabulated in Table I. The
experiment is consistent with an onset for fracture just
above Gc, as computed using the density functional
theory surface energy [9]. In agreement with experiment,
the DCET MD simulation shows a propagating crack
when the energy release rate reaches Gc, as computed
using the TB surface energy and the EDIP unrelaxed
elastic constants [25]. The scatter in the measured crack
speeds makes the variations at loads above the critical
load statistically insignificant. In the SW and EDIP sim-
ulations, the critical energy release rate is between 6 and 7
times the appropriate Gc for each.

While the fracture morphology differences between
the DCET MD and the ductile EP simulations are
striking, the crucial discrepancy exists at loads below
the critical load for crack propagation but above Gc.
Using quasistatic energy minimization calculations, we
have measured the critical loading GQS

c at which bond
025501-2
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rearrangement occurs at the crack tip. The lattice trapping

measure R �

�����������������
GQS

c =Gc

q
is listed in Table I. The disagree-

ment between the EPs and DCET MD appears in the form
of higher lattice trapping long before dislocation nuclea-
tion begins to blunt the crack tip. The IMSW EP fractures
in a brittle manner, but like SW, lattice trapping is large.

To quantify the lattice trapping barrier, we decompose
the energy changes during the propagation of a crack by
one lattice spacing into a bond breaking part and an
elastic relaxation part. In Fig. 3 we illustrate this decom-
position for SW at Gc. The energy barrier for the crack
propagation process Etot�s� is computed directly by a
series of constrained minimizations at increasing crack-
tip atom separations s [see Fig. 3(a)]. The bond-breaking
energy �s�s� is computed by separating two rigid slabs to
form a new surface. The interatomic distance needed to
break a bond sbb (see Fig. 3) sets the length scale over
which �s�s� varies. The elastic energy gain, Eel�s� �
Etot�s� � �s�s�, also depends on the separation of the
crack-tip atoms, since that separation controls how
much the rest of the loaded sample can relax. The length
scale over which the elastic energy is gained is the dis-
tance between two atoms immediately behind the crack
tip seq (see Fig. 3). These two length scales are listed in
Table I. The balance between Eel�s� and �s�s� determines
the size of any energy barrier to crack propagation. The
energy-barrier calculation and decomposition procedure
has been repeated at several loadings using SW, IMSW,
and EDIP. We find that the scaled elastic energy
Eel�s=seq�=G is model independent. It is impractical to
directly compute the barrier using DCET. To estimate the
barrier using the model, we compute G using the EDIP
elastic constants and obtain seq from a quasistatic DCET
relaxation below Gc. By summing the scaled elastic and
surface energies, we can estimate the DCET crack propa-
gation barrier.
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FIG. 3. (a) Visualization of an atomic configuration indicat-
ing crack-tip atom separation s. (b) Example calculation of
energy decomposition for SW during the propagation of a crack
at Gc 	 2:27 J=m2 as a function of the distance between the
atoms initially at the crack tip. Etot�s� and �s�s� are computed
directly (see text), and their difference is defined as Eel�s�.
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Figure 4(a) shows that the barriers estimated from our
model and those directly computed for SWand IMSWare
in good agreement. For SW, the barrier is so large that
even at the critical loading for dislocation formation, the
barrier to brittle fracture remains substantial. This is why
brittle fracture is entirely suppressed in SW. EDIP exhib-
its similar behavior. In contrast, at the loading where
brittle fracture is initiated for IMSW, the estimated bar-
rier essentially vanishes, signifying the onset of brittle
fracture for this EP. The modification of SW that leads to
IMSW increases bond bending energies, leading to higher
dislocation nucleation energies but leaving the lattice
trapping barrier essentially unchanged.

The DCET barrier appears in Fig. 4(b). At Gc the crack
tip is lattice trapped, with the crack-tip bond slightly
stretched. At the critical loading for the initiation of
brittle fracture, the estimated DCET barrier goes to
zero. This indicates that the model also correctly predicts
the onset of brittle fracture in the DCET simulation.

The bond-breaking energy can be modeled by the en-
ergy required to separate two rigid slabs forming ideal
surfaces, i.e., bulk terminated and unrelaxed. This indi-
cates that the bond-breaking process is not significantly
affected by the relaxation of the newly formed surface,
nor is it affected by the strain gradient or by the asym-
metry of broken bonds on one side of the crack tip and
intact bonds on the other. The model independence of the
scaled elastic energy indicates that the only relevant
deviation from linear elasticity is in the detailed shape
of the crack immediately behind the tip.

In contrast to physical pictures where the range of the
interaction is the only length scale [13,26] but similar to
Ref. [5], two length scales naturally emerge from our
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FIG. 4. (a) Energy of the crack-propagation process as com-
puted directly at Gc (symbols), estimated using our model at Gc
(solid lines), and estimated at GQS

c (dashed lines). (b) Estimated
energy of the crack-propagation process computed using the
model for DCET MD at Gc (solid line) and at GQS

c (dashed
line).
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model, one for bond breaking and the other for elastic
relaxation. It is their relative size that is important. If the
bond-breaking length scale is larger than the elastic
relaxation length scale, the breaking of a single bond
happens gradually as the crack advances by several lattice
periods, and lattice trapping is small. In the opposite
limit, all of the bond-breaking energy cost occurs before
elastic relaxation lowers the total energy, and lattice
trapping is large. Insofar as sbb and seq approximate these
length scales, Table I shows that both length scales ‘‘con-
spire’’ to reduce lattice trapping in TB as compared with
the EPs: The bond-breaking distance is larger by a factor
of 2–3, and the crack-tip opening at a given strain is
smaller by 25%–40%.

At �575 
C silicon exhibits an abrupt transformation
from brittle fracture to ductile flow [27]. Rice’s criterion
and the temperature dependence of dislocation mobility
have been invoked as a possible explanation of this
brittle-to-ductile transition [28]. In the spirit of our
model, it seems plausible that silicon’s incipient ductility
is controlled by the interplay between the free energy
barrier to brittle fracture and the barriers to dislocation
nucleation and migration. At low temperature, the barrier
to brittle fracture is lower than the relevant dislocation
energy scales. In silicon, the difference between these
energy scales is small, temperature dependent, and sensi-
tive to the stress field leading to the sharp brittle to ductile
transition observed in experiments.

We have compared the onset of fracture in multiscale
simulations and empirical potential simulations to ad-
dress the significance of lattice trapping in silicon. Our
multiscale model shows that lattice trapping is small but
important. Popular empirical potentials show erroneously
large lattice trapping, often leading to a ductile crack
morphology. The lattice-trapping barrier to brittle frac-
ture is controlled by two length scales. We suggest that
lattice trapping may play a crucial role in the brittle-to-
ductile transition. We are working to understand the two
length scales at a first-principles level, and to determine
whether the brittle-to-ductile transition is contained in
the models that underlie our multiscale simulation.
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