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Black Holes in Gödel Universes and pp Waves

Eric Gimon and Akikazu Hashimoto
School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA

(Received 25 April 2003; published 11 July 2003)
021601-1
We find exact solutions for rotating and nonrotating neutral black holes in the Gödel universe of five-
dimensional minimal supergravity theory. We also describe the embedding of this solution in M-theory.
After dimensional reduction and T-duality, we obtain a supergravity solution corresponding to placing a
black string in a pp-wave background.
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of the minimal supergravity theory in 4� 1 dimensions
consist of the metric and a 1-form gauge field. Their
equations of motion are given by

In order to find a solution to the supergravity equations
of motion describing black holes in this background,
consider an ansatz
The Gödel universe [1] is an exact solution of Einstein’s
equations in the presence of a cosmological constant and
homogeneous pressureless matter. This space-time solu-
tion exhibits several peculiar features including the pres-
ence of closed timelike curve and the absence of globally
spatial-like Cauchy surface. Recently, a space-time ex-
hibiting most of the peculiar features of Gödel universes
was shown to be an exact solution of minimal super-
gravity in 4� 1 dimensions, preserving some number
of supersymmetries [2,3]. As a result, these solutions
can be embedded in supergravity theories of 10 or 11
dimensions and may constitute consistent backgrounds
of string theory. The consistency of this solution was
further investigated recently by [4,5]; they found that
the supersymmetric Gödel universes of [2,3] are related
by T-duality to the pp-wave solutions [6] which have
generated significant interest recently in light of the
fact that the world sheet formulation of string theory is
highly tractable [7] and the fact that this string theory
admits a dual field theory description [8].

In this Letter we construct a space-time describing a
Schwarzschild black hole localized inside the Gödel
universe, and describe some of its basic properties. Just
as for Minkowski, anti de Sitter, and de Sitter spaces, such
a solution provides important insights into the nature of
Gödel universes. We should mention that a different but
very interesting space-time describing a charged extremal
black hole with finite horizon area in a Gödel universe
was identified in [3].

Finding space-times describing a black object localized
inside the pp wave is an important outstanding problem.
Discussions of the recent approaches to this problem can
be found in [9,10,11]. As a bonus for finding the black-
hole solution in Gödel universes, we are able to construct
the black string solution in pp waves.

We will follow [2,3] and work mostly with the bosonic
components of the 4� 1-dimensional minimal supergrav-
ity. Unlike [2,3], however, we will not require our solu-
tions to preserve any supersymmetry. The bosonic fields
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conventions of [2,3] and use angular coordinates
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The Gödel universe is a solution of the equations of
motion (1) given by

ds2 � ��dt� jr2�3
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where, following the conventions of [2,3],

�3
L � d�� cos� d : (4)

The parameter j sets the scale of the background, which
reduces to Minkowski space for small j. From the sign
of the g�� component of the metric, it is easy to recog-
nize a closed timelike curve parametrized by � with
all other coordinates fixed, for r > 1=2j. We will refer
to the surface at fixed r where g�� vanishes as the
‘‘velocity of light surface.’’ It should be emphasized,
however, that since the Gödel space-time is homogeneous,
there is a closed timelike curve going through every point
in space-time.
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Substituting this ansatz into the equations of motion
gives rise to a rather complicated set of equations. It
can be easily checked, however, that the choice
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solves these equations. In the small j limit, this solution
reduces to an ordinary Schwarzschild black hole in 4� 1
dimensions. On the other hand, in the small m limit, we
recover the Gödel universe. We therefore conclude that
this background corresponds to a Schwarzschild black
hole placed inside the Gödel universe. This solution is
the main result of this Letter; we will study its various
properties.

The ansatz (5) clearly preserves five of the nine isome-
tries of the Gödel universe. They are generated by time
translation @t, as well as the SU�2� 	 U�1� subgroup of
the SO�4� � SU�2� 	 SU�2� isometry group on S3 ,

'R1 � � cot� cos @ � sin @� �
cos 
sin�

@�;

'R2 � � cot� sin @ � cos @� �
sin 
sin�

@�;

'R3 � @ ; 'L3 � @�:

(7)

The most salient feature of the solution (6) is the
existence of a horizon at

r2BH � 2m�1� 8j2m�: (8)

This surface is a horizon in the sense that future directed
light cones emanating from all points inside the horizon
are strictly contained inside. The surface r � rBH also
exhibits many of the standard properties of a black-hole
horizon, as we will see below.

The area of the horizon is

A � 2(2
����������������������������������
8m3�1� 8j2m�5

q
: (9)

It is tempting to apply the standard interpretation of
black-hole thermodynamics and think of

S �
A

4G5
(10)

as the entropy. It is interesting to note that with this
definition the entropy does not increase monotonically
with m. In fact, at m � 1=8j2, the horizon area vanishes.
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For m greater than this critical value, the horizon dis-
appears and the space-time (6) is nakedly singular. This
appears to constitute a physical upper bound on a mass of
a neutral state in a Gödel universe, rendering the number
of degrees of freedom to be finite.

As one increases m, the velocity of light surface also
moves in toward small r,

r2v �
1

4j2
�1� 8j2m�: (11)

One of the main objectives of [4] was to study the
holography of Gödel universes from a ‘‘phenomenologi-
cal’’ point of view and to compare against the known
properties of de Sitter space. To this end, the authors of [4]
computed the location of a ‘‘preferred holographic
screen’’ for a timelike observer at the origin, as defined
in [12]. The area of the preferred screen is a measure of
the number of degrees of freedom contained in the vol-
ume enclosed by this surface. Because of the SU�2�
symmetry (7), this simply amounts to computing the
maximum area for a family of surfaces with 3-sphere
topology, each at fixed t and r coordinates. For the space-
time (6), each surface has area

A �r� � r3
�������������������������������������
1� 4j2�r2 � 2m�

q
: (12)

For m � 0, this expression reduces to the result obtained
in [4]. The location and area of the preferred holographic
screen come out to be

r2s �
3�1� 8j2m�

16j2
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3
���
3

p
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64j3
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Note that the area As of the preferred screen decreases as
we increase m. Also, at a finite value of m � 3=32j2, but
before the critical value for the appearance of a naked
singularity m � 1=8j2, the black-hole horizon and the
preferred screen coincide. This convergence is similar to
what was observed in de Sitter space [13], except that in
that case screen and horizon meet just as a naked singu-
larity appears.

The curvature invariants for this space-time take a
simple form. For example, the Ricci scalar is

R �
16j2�r2 �m�

r2
: (14)

The space-time is smooth at the horizon radius as long as
m< 1=8j2, but there is always a singularity at r � 0 for
nonvanishing m.

It possible to find an analytic form for geodesics in this
space-time geometry following the approach of [4]. Let
us write the tangent vector to the geodesic as

' � _tt
@
@t

� _rr
@
@r

� _��
@
@�

� _  
@
@ 

� _��
@
@�

; (15)

where the dot denotes derivative d=d� with respect to the
affine parameter �, and define the integrals of motion
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FIG. 1 (color online). The projection to fixed �t; �;  � plane of
a null geodesic which is tangent to the velocity of light surface
at an instant and spirals in toward the horizon in the future and
in the past. The dotted line is the velocity of light surface and
the shaded region is the region inside the horizon.
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It is useful to define one more integral of motion

� � �'; 'R1 � � cos 
�
L cos��

L�
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�
�
r2 _��2 sin���

4
;

(17)

where 'R1 is one of the isometries listed in (7). The con-
straints implied by these conserved quantities simplify
drastically if we set L � L� � � � 0 and read

_tt �
r2�1� 4j2�r2 � 2m��

r2 � 2m� 16j2m2 ; _�� � 0;

_  � 0; _�� �
4jr2

r2 � 2m� 16j2m2 :

(18)

If we set M � 0 so as to consider only null geodesics, we
find a very simple expression for the radial derivative

_rr 2 � �1� 8j2m� � 4j2r2; (19)

which is easily solved. Integrating (18) then gives the full
expression for the geodesics in this family. If we pick
initial conditions so that

r��� �
1

2j

��������������������
1� 8j2m

q
cos�2j��; (20)

the corresponding geodesic is tangent to the velocity of
light surface at � � 0 and asymptotes to a trajectory

r2 � r2BH � 2m�1� 8j2m�;

� �
4j

�1� 8j2m�2
t��0;

(21)

which spirals into the horizon in infinite coordinate time t
(although it crosses the horizon in finite affine time); see
Fig. 1 for an illustration. This is the behavior expected for
a geodesic falling toward a black-hole horizon. One can
also compute the expansion scalar for the congruence
associated with this family of geodesics,

� �
3� 8j2�2r2 � 3m�

r
�������������������������������������
1� 4j2�r2 � 2m�

p ; (22)

which vanishes at the radius of the preferred screen r � rs
as expected.

It is interesting to consider the embedding of the
solution (6) of 4� 1-dimensional supergravity into string
021601-3
theory. The most efficient way to do this is to first embed
the solution of supergravity in 4� 1 dimensions into
10� 1 dimensions. This can be done by considering an
ansatz

ds2 � g��dx
�dx��

X10
i�5

�dxi�2; C�
2���
3

p A^K; (23)

where

K � dx5 ^ dx6 � dx7 ^ dx8 � dx9 ^ dx10: (24)

Indices � and � run from 0 to 4. One can verify that
substituting this ansatz into the supergravity equations of
motion in 10� 1 dimensions,

Rab �
1

12

�
FacdeF

cde
b �

1

12
gabF2

�
; (25)

gives rise precisely to the equations of motion for super-
gravity in 4� 1 dimensions (1). One can now dimension-
ally reduce along the x10 coordinate to obtain the solution
(6) embedded into type IIA supergravity.

In the absence of the black hole, T-dualizing along x9

will give rise to a pp-wave solution obtained by taking
the Penrose limit of intersecting D3-branes. In the pres-
ence of the black hole, T-duality yields a new black string
solution for the type IIB theory,
ds2 � �

�
1�

2m

r2

�
dt2 � dy2 � 2jr2�3

L�dt� dy� � 2mj2r2��3
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2 �
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dr2

�
r2

4
�d�2 � d 2 � d�2 � 2 cos� d d�� � ds2

T4 ; (26)

where y is the coordinate dual to x9. There are also nontrivial field strengths for the antisymmetric tensor fields in this
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background which can be found by following the duality
starting from (23).

In the limit m! 0, this new solution (26) reduces to a
well known pp-wave geometry. In the j! 0 limit, the
solution reduces to uncharged black string solution of
type IIB supergravity. This suggests that (26) should be
interpreted as the solution describing a black string in an
asymptotically pp-wave background geometry.

There is a subtlety with this interpretation, however. If
one collects the angular part of the metric (26) by fixing t,
y, and r, one finds

ds2 �
r2

4
���1

L�
2 � ��2

L�
2 � �1� 8j2m���3

L�
2�: (27)

In other words, the term in the deformed metric along �3
L

is of the same order in r as the undeformed metric of the
round 3-sphere. Turning on m therefore has the effect of
squashing this 3-sphere until one reaches m � 1=8j2 at
which point the 3-sphere is squashed completely. Because
of this effect on the asymptotic geometry, the solution
(26) cannot be interpreted as that of a black string with
the same asymptotic background geometry as the empty
pp wave.

An important question is whether or not it is possible to
find a solution that would describe a black string which
does not squash or otherwise affect the large r asymptotic
geometry of the pp wave. It may be that a black hole, as
opposed to a black string, will have smaller effect on this
asymptotic geometry. Similar gravitational back reaction
effects due to localized and delocalized extremal sources
were observed in [14]. Perhaps finite energy density uni-
formly distributed along the light-cone coordinates of the
pp wave generically back reacts to deform the large r
asymptotics. It would also be interesting to examine how
the Laflamme-Gregory instability of the black string
solution [15] is affected when j is nonvanishing.

It would also be interesting to explore various general-
izations of the solution (6). For example, one can easily
verify that

f�r� � 1�
2m

r2
; g�r� � 2jr�

2ml

r3
;

h�r� � j2�r2 � 2m� �
ml2

2r4
;
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�
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2m

r2
�

16j2m2

r2
�
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r2
�

2ml2

r4

�
�1

(28)

also solves the equations of motion. By taking the j! 0
limit, we recover the rotating black-hole solution of 4�1
gravity [16]. One could therefore think of this solution as
a rotating black hole inside the Gödel universe. It is
possible, in particular, to tune the angular momentum

l � �4jm (29)

so as to make the horizon angular velocity �H vanish.
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It should also be possible to find a generalization to
charged black holes by following the construction out-
lined in [17,18,19]. This will give rise to the nonextremal
generalization of the black-hole solution identified in [3].

There are many other interesting issues to explore.
One would like to map out the full causal structure of
the black-hole solution (6). It would also be interesting
to find a suitable generalization of Arnowitt-Deser-
Misner (ADM) mass and angular momentum to the
Gödel universe and to compute their values for (6) and
(28). Ultimately, one would like to understand the physi-
cal meaning of the area of the preferred screen (13) and
the horizon (9) as being related to some microscopic
state counting, possibly of strings in a pp-wave back-
ground. We hope that the explicit solution of supergravity
equations of motion describing black holes in this back-
ground will stimulate further insight into these fascinat-
ing issues.
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