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Front Dynamics in Reaction-Diffusion Systems with Levy Flights:
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The use of reaction-diffusion models rests on the key assumption that the diffusive process is
Gaussian. However, a growing number of studies have pointed out the presence of anomalous diffusion,
and there is a need to understand reactive systems in the presence of this type of non-Gaussian diffusion.
Here we study front dynamics in reaction-diffusion systems where anomalous diffusion is due to
asymmetric Levy flights. Our approach consists of replacing the Laplacian diffusion operator by a
fractional diffusion operator of order �, whose fundamental solutions are Levy �-stable distributions
that exhibit power law decay, x��1���. Numerical simulations of the fractional Fisher-Kolmogorov
equation and analytical arguments show that anomalous diffusion leads to the exponential acceleration
of the front and a universal power law decay, x��, of the front’s tail.
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evidence of non-Gaussian diffusion has been observed in
perturbative transport experiments [4], in numerical

aD�
x� �

��2� ��
@2x

a �x� y���1 dy; (3)
Reaction-diffusion models have found widespread ap-
plicability in many areas, including chemistry, biology,
physics, and engineering; see, for example, Ref. [1]
and references therein. The simplest reaction-diffusion
models are of the form

@t� � �@2x�� F���; (1)

where � is the diffusion constant, and F is a nonlinear
function representing the reaction kinetics. Examples of
particular interest include the Fisher-Kolmogorov equa-
tion for which F � 	��1��� and the real Ginzburg-
Landau equation for which F � 	��1��2�. The
nontrivial dynamics of these systems arises from the
competition between the reaction kinetics and diffusion.

At a microscopic level, diffusion is the result of the
random motion of individual particles, and the use of
Laplacian operators @2x� to model it rests on the key
assumption that this random motion is a stochastic
Gaussian process. However, a growing number of works
have shown the presence of anomalous diffusion process-
es for which the mean square variance h�x� hxi	2i 
 t	

grows faster (	 > 1, in the case of superdiffusion) or
slower (	 < 1, in the case of subdiffusion) than in a
Gaussian diffusion process [2]. Accordingly, an impor-
tant open problem is to understand the dynamics of
reaction-diffusion systems when the assumption of
Gaussian diffusion fails. This problem has a particular
relevance to plasma physics, which was our original mo-
tivation to carry out this study. In particular, reaction-
diffusion models with Gaussian diffusion have been used
to study the dynamics of spatiotemporal propagating
fronts in the transition to high confinement regimes in
magnetically confined plasmas [3]. However, these stud-
ies must incorporate the fact that, in this type of plasma,
0031-9007=03=91(1)=018302(4)$20.00 
simulation of three-dimensional turbulence [5], and in
test-particle transport studies [6].

The origin of non-Gaussian diffusion can be traced
back to the existence of long-range correlations in the
dynamics, or the presence of anomalously large particle
displacements described by broad probability distribu-
tions. Here we are interested in the second possibility.
In particular, we focus on systems that exhibit anomalous
diffusion caused by Levy flights, for which the probabil-
ity distribution of particle displacements, p�‘�, is broad in
the sense that h‘2i � 1. As is well known, for these kinds
of systems the central limit theorem cannot be applied;
and as N ! 1, the probability distribution function of
x �

P
N
n ‘n, rather than being Gaussian, is an �-stable

Levy distribution [2,7].
The majority of studies on anomalous diffusion due to

Levy flights have focused on symmetric processes for
which p�‘��p��‘�. However, this is not always the case.
For example, numerical studies of test-particle transport
in magnetized plasmas and in geophysical flows show
that these systems have a built-in asymmetry that gives
rise to asymmetric transport [6,8]. Also, non-Gaussian
asymmetric processes are likely to have an important
role in the asymmetries observed in pulse propagation
experiments in confined plasmas [4]. Motivated by this,
we focus on anomalous diffusion processes that exhibit
Levy flights in one direction, say, for x > 0, but Gaussian
behavior in the other direction, x < 0. The main goal of
this Letter is to understand how this asymmetry mani-
fests in the propagation of right-moving (x > 0) and left-
moving (x < 0) fronts in reaction-diffusion systems. To
study this problem we propose the following model:

@t� � �aD�
x �� F���; (2)

1 Z x ��y�
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FIG. 1. Right-propagating front profiles at successive times,
obtained from a numerical integration of the fractional Fisher-
Kolmogorov Eq. (6) with � � 1:5 and initial condition
��x; 0� � �r

0�x� in Eq. (7). The dashed line has a slope equal
to �. In agreement with the analytical result, right-moving
fronts develop an algebraically decaying tail, �
 x��.
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where the Laplacian operator @2x has been replaced by
aD

�
x , the Riemann-Liouville, left-fractional derivative

of order �, with 1 
 �< 2. Fractional calculus is a
natural mathematical generalization of standard calculus
[9], for example, �1D�

x eikx � �ik��eikx, and in recent
years has been applied to a large class of problems in
the applied sciences; see Refs. [10,11], and references
therein.

Previous studies of reaction-diffusion systems with
anomalous diffusion include Ref. [12], where reaction in
the presence of subdiffusion was studied using fractional
derivative operators in time. In contrast, here we are
interested in superdiffusion, which we model with frac-
tional operators in space. The interplay of bistable reac-
tion processes and anomalous diffusion caused by Levy
flights was addressed in Ref. [13]. More recently, super-
fast front propagation in reactive systems with non-
Gaussian diffusion was discussed in Ref. [14]. The model
studied in Ref. [14] consisted of a time-discrete reac-
tion system coupled to a superdiffusive Levy process
described by an integral operator with an algebraic de-
caying propagator. In our model in Eq. (2), we do not
assume a time-discrete reaction kinetics; and through the
use of fractional operators we use the exact Levy propa-
gator. In addition, we consider here the role of asym-
metric transport.

The physical motivation for using the left-fractional
derivative rests on the fact that for F � 0, Eq. (2) reduces
to an asymmetric, space-fractional diffusion equation
whose solution for a delta function initial condition,
��x; t� 0� � ��x�, in the infinity domain x2 ��1;1� is

��x; t� �
1

��t�1=�
p�

�
x

��t�1=�

�
; (4)

where

p���� �
1

2�

Z 1

�1
ei

�k��ik�dk: (5)

For � � 2, Eq. (5) is the Gaussian propagator, and Eq. (4)
is the fundamental solution of the standard diffusion
equation. However, for 1<�< 2, Eq. (5) is an extremal,
�-stable Levy distribution, i.e., a distribution with maxi-
mum skewness. These distributions are the attractors of
stochastic processes that exhibit Levy flights in only one
direction, they have algebraic asymptotic behavior at plus
infinity, p���� 
 1=���1, but decay exponentially at mi-
nus infinity [7]. In principle, one could add to Eq. (2) a
right-fractional derivative with a suitable weighting fac-
tor, and for F � 0 obtain Levy �-stable distribution of
arbitrary skewness [15]. Equation (4) implies that hxni �
��t�n=�

R
r
�r �

np����d� diverges as r! 1, for n � �.
However, in physical applications (e.g., Ref. [8]), a
finite-r cutoff leads to the finite-size scaling hxni 
 tn=�,
which implies superdiffusive behavior with 	 � 2=�

In the remainder of this Letter, we present a numerical
and analytical study of front solutions of Eq. (2) with a
reaction dynamics of the Fisher-Kolmogorov type, F �
018302-2
	��1���, with two fixed points, one stable, � � 1, and
the other unstable, � � 0. As it is usually done for initial
value problems with fractional derivatives in time, and
boundary value problems in finite domains with frac-
tional derivatives in space [9,10], we regularize the sin-
gular behavior of the fractional operator by subtracting
the value of ��x� at the lower limit, namely

@t� � �aD
�
x �����a�	 � 	��1���; (6)

where ��a� � ��x � a; t�. In an infinite domain, a!
�1, and Eq. (6) reduces to Eq. (2) since the fractional
derivative, �1D�

x , of a constant is zero. Here we consider
the finite domain, x 2 �0; 1�, and take a � 0. The numeri-
cal solutions were obtained by integrating Eq. (6) with
boundary conditions ��0� � 1 and �0�0� � 0 for right-
propagating fronts, and �0�0� � 0 and ��1� � 1 for left-
propagating fronts. We used a semi-implicit time advance
with an up-wind finite difference scheme. The fractional
operator was discretized using the Grunwald-Letnikov
definition of the fractional derivative [9]. Details on the
numerical method will be published elsewhere.

We consider two classes of initial conditions

�r;l
0 �x� �

1

2

�
1� tanh

�
x� x0
W

��
; (7)

where �r
0�x� takes the � sign and corresponds to a right-

propagating front, and �l
0�x� takes the � sign and corre-

sponds to a left-propagating front. Figure 1 shows the
time evolution of the front profile for �r

0�x� with W �
0:001 and x0 � 0:003, obtained from the direct numerical
integration of Eq. (6) with 	 � 1 and � � 5� 10�7. In
this case, the front propagates to the right and develops an
algebraic decaying tail �
 x��. The time evolution of
the tail, ��x � 1; t�, exhibits, for large t, exponential
018302-2
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growth �
 e	t. The acceleration of the front is evi-
dent in the space-time diagram in Fig. 2 that shows a
contour plot of ��x; t�. Front acceleration and alge-
braic decay of the tail was also observed in the model
studied in Ref. [14], but with a different exponent, namely
�
 x����1�.

Left-propagating fronts exhibit a more standard dy-
namics. In particular, Fig. 3 shows the time evolution of
the front profile for an initial condition �l

0�x� with W �
0:001, 	 � 1, and � � 5� 10�7 (the same parameter
values used in Fig. 1) and x0 � 0:9. In this case, the front
exhibits an exponential decay and a self-similar propa-
gation with constant speed c.

The numerical results presented above can be ex-
plained analytically using the leading-edge approxi-
mation, extensively used in the study of fronts with
Gaussian diffusion [16]. In this approximation, in the
limit �� 1, the reaction kinetics F��� is linearized
around the unstable phase leading to the linear fractional
equation:

@t� � ��1D
�
x�� 	�: (8)

Substituting � � e	t �x; t� into Eq. (8) yields a
fractional-diffusion equation for  whose general
solution is

 �x; t� �
Z 1

�1
p���� 0�x� ��t�1=��	d�; (9)

where, as discussed before, p���� given in Eq. (5) is the
extremal Levy �-stable distribution that is the Green’s
function of the asymmetric fractional-diffusion equation.
For a front initial condition of the form �0�x < 0� � 1
and �0�x > 0� � e�!x, Eq. (9) gives
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FIG. 2. Contour plot of the numerical solution ��x; t� in
Fig. 1. The curvature of the isocontours illustrates the expo-
nential acceleration of fronts in the fractional Fisher-
Kolmogorov equation. The dashed line corresponds to the
analytical scaling result �
 x��e	t.
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��x; t� � e	t
Z 1

x��t��1=�
p����d�

� e�!x�	t
Z x��t��1=�

�1
e!��t�

1=��p����d�: (10)

Before using this solution to obtain the asymptotic
behavior of fractional-diffusion, right-propagating
fronts, it is instructive to consider the standard diffusion
limit, � � 2. In this case, the Green’s function is the
Gaussian propagator p2���, and Eq. (10) becomes

��x; t� � e�!�x�ct�P
�
x� 2!�t��������

2�t
p

�
�e	t

�
1� P

�
x��������
2�t

p

��
;

(11)

where P�z� is the normal probability distribution function.
Using the fact that P�z! 1� � 1, we get from Eq. (11)
the asymptotic behavior ��x; t� 
 e�!�x�ct�. Where the
speed of the front, c, is related to the steepness of the
front, !, according to c � 	=!� �!, with the minimum
front speed cm � 2

�������
	�

p
selected for suffciently steep

profiles [1,16].
In the fractional case we consider a large, fixed t, and

x��t��1=� ! 1. Introducing a cutoff 
 such that 1 �

< x��t��1=� in the second integral in Eq. (10), inte-
grating by parts, and using the asymptotic expression of
the Levy distribution, p���� 
 1=���1 we get

�
 �te	t
�
x��

�
�
x���1

!
�

�1� ��

!��t�1�1=�

�
Z x��t��1=�




e!���t�
1=���x	

�2�� d�� � � �

�
; (12)

where the dots denote terms of order e�!x. Since the
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FIG. 3. Left-propagating front profiles at successive times
obtained from a numerical integration of the fractional
Fisher-Kolmogorov Eq. (6) with � � 1:5 and initial condition
��x; 0� � �l�x� in Eq. (7). The dashed line has a slope equal to
! � 2=W � 2000. In agreement with the analytical result in
Eq. (13), the front exhibits an exponential decay and has a
speed of c � 5:22� 10�4.
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integrand on the right-hand side of Eq. (12) is bounded
by 1=�2��, the third term in this equation is at most of
order x���1. Therefore, in agreement with the numerical
result in Fig. 1, to leading order the tail of right-propagat-
ing fronts decays as �
 1=x�. The time-asymptotic dy-
namics for fixed, large x can also be obtained from
Eq. (10). In this case, a stationary phase approximation
gives, in agreement with the numerical results,�
 e	t to
leading order, with a correction of order ��t��1=�e	t.

The previously discussed asymptotic results can be
summarized as �
 x��e	t, which, as Fig. 2 shows, re-
produces the numerical results. Solving the equation
��x; t� ��L for x, for a fixed value ���L 2 �0;1� gives
the Lagrangian trajectory xL � x�t;�L� of the coordi-
nate of a point in the front with concentration� � �L. In
the asymptotic limit we have xL 
 e	t=�. That is, the
Lagrangian velocity vL � dxL=dt of right-moving fronts
grows exponentially with time, vL 
 e	t=�.

To conclude, consider the dynamics of left-moving
fronts, such as the one shown in Fig. 3. In this case, the
leading-edge description is straightforward since these
fronts exhibit exponential tails and propagate at constant
speed. Substituting �
 exp�!�x� ct�	 into Eq. (2), we
obtain the dispersion relation c � c�!�, with minimal
front speed cm � c�!m� where

c �
	
!
�

�

!1��
; cm � ��1=�

�
	

�� 1

�
���1�=�

: (13)

Numerical results support the idea that for steep (! � !m)
initial conditions the front selects the minimum velocity
cm, whereas for wide (! < !m) initial conditions the front
speed depends on the initial condition according the first
equation in (13). As expected, in the limit � � 2 the
well-known results of front propagation in the presence
of Gaussian diffusion [1,16] are recovered. Summarizing,
in this Letter we have proposed the use of fractional-
diffusion operators to study front dynamics in reaction-
diffusion systems with non-Gaussian diffusion caused
by asymmetric Levy flights. Numerical and analytical
results show that right-moving fronts accelerate expo-
nentially, and develop an algebraic decaying tail, �

x��e	t. Left-moving fronts have exponential decaying
tails and move at a constant speed given by Eq. (13).
The results are general in the sense that they are inde-
pendent of the details of the reaction kinetics, pro-
vided it is of the ‘‘pull’’ type with a stable and an unstable
phase. Two areas of potential application of the ideas
presented here are plasma physics and biology. In par-
ticular, transport studies in three-dimensional pressure-
driven plasma turbulence [5] and in drift waves [6] have
shown evidence of anomalous diffusion and non-
Gaussian probability distributions of particle displace-
ments which can be modeled using fractional-diffusion
equations. Also, fractional-diffusion equations seem to
capture important aspects of perturbative transport ex-
periments in fusion plasmas including nonlocal diffu-
018302-4
sion effects in the propagation of cold pulses (e.g., [4]).
On a parallel development, reaction-diffusion models
with Gaussian diffusion have been used to study the
turbulence-shear flow interaction in the L-H transition
in fusion plasmas (e.g., [3]), and there is a pressing need to
understand the role of non-Gaussian, nonlocal diffusion
in the dynamics of L-H transition fronts. The results
presented here represent a first step in the study of this
open problem. On the other hand, the fractional Fisher-
Kolmogorov equation discussed here shares some simi-
larities with reaction equations with integro-differential
operators used in Biology to model long-range diffusion
and spatial patterns in neural firing [1]. In this regard, the
algebraic decaying kernel in the fractional diffusion op-
erator might be useful for describing strongly nonlocal
processes.
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