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Monte Carlo Simulation of a Coarse-Grained Model of Polyelectrolyte Networks
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The structure and properties of a coarse-grained model of a polyelectrolyte network is studied by
means of Monte Carlo simulations. Counterions are treated explicitly, and permanent tetrafunctional
cross-linking sites are annealed. The resulting pressure-density relationships exhibit a strong depen-
dence on the strength of electrostatic interactions. A discontinuous volume change is observed when
electrostatic interactions are strong. The structure of the model networks is examined at various
conditions, and it is found to be considerably different from that of noncross-linked polyelectrolytes.
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Polyelectrolyte gels have a network structure consist-
ing of cross-linked polymer chains with charged groups
and counterions. When a dry polyelectrolyte gel is
immersed in a solvent, it can absorb large amounts of
solvent and expand its volume considerably. It is also
experimentally observed that charged gels can undergo
a discontinuous volume transition under certain solvent
conditions [1-3]. This unusual but controllable volume
behavior has led to numerous uses of polyelectrolyte gels,
including applications in drug delivery, environmental
cleanup operations (as superabsorbent materials), and
microfluidic devices (as actuators).

Recent theoretical work on polyelectrolytes has in-
creased our understanding of these systems considerably
[4—6]; furthermore, molecular simulations have helped
us assess some of the approximations invoked in various
theoretical treatments [7—10]. Much less theoretical and
numerical work has been conducted on cross-linked poly-
electrolytes or gels.

In recent years, molecular simulations of simple elec-
trolyte and colloidal models have revealed that ionic
association in such systems leads to unexpected behaviors
and trends, some of which are not captured by bare
integral-equation formalisms [11-13]. We believe that
for the more complex case of charged polyelectrolyte
gels, molecular simulations could also help clarify the
current understanding of this important class of mate-
rials. Note that simulation reports on the structure and
properties of neutral polymeric networks have shed con-
siderable light into the behavior of elastomers [14-17].
However, with one exception [16], direct observations of
first-order phase transitions in such networks have re-
mained elusive [17]. Perhaps more importantly, most
literature studies have been restricted to study of neutral
polymeric networks. An earlier account of a charged
polymeric network was limited to a two-dimensional
system on a lattice and in the absence of explicit counter-
ions [18]. Very recently, Schneider and Linse [19] have
presented simulations of relatively small samples of poly-
electrolyte gels.

In this Letter we present the results of simulations of
large polyelectrolyte networks in the presence of explicit
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counterions. The goals of our work are twofold. Dis-
continuous volume transitions are experimentally ob-
served when weakly charged gels are placed in a poor
solvent. In this work, we first seek to determine whether a
model consisting of a charged polymeric network and
explicit counterions is sufficient to generate a first-order
swelling transition analogous to that observed experi-
mentally in some types of gels. Second, we seek to
determine the molecular structure of the gel in the swol-
len and collapsed states, thereby providing exact numeri-
cal data to assess the validity of some of the assumptions
implicit in theoretical treatments.

The system considered in this work consists of a per-
fect, defect-free network of polymer chains connected at
the ends to tetrafunctional cross-linking sites (nodes).
Our simulation system consists of N, 4. = 64 nodes and
Nchain = 128 cross-linked chains. All polymer chains
consist of n = 98 monomers. Both monomers and nodes
carry a unit negative charge z = —1. The total number of
particles on the network backbone is N4 X 2n + 1) =
12608. An equal number of monovalent counterions is
included in the simulation. The solvent is treated implic-
itly as a dielectric continuum.

Polymer chains are modeled as a sequence of charged
soft spheres connected by finite extensible nonlinear
elastic (FENE) springs. The total potential energy of
the system includes three contributions: van der Waals
(Lennard-Jones) interactions between nonbonded par-
ticles, Coulombic interactions between charged sites,
and permanent bonds between adjacent monomers.
Lennard-Jones interactions between nonbonded sites are
cut off at r. = 2/¢ and are purely repulsive (polymer
chains are immersed in a good solvent). In this work,
all particles have the same diameter o and energy pa-
rameter €. Throughout this work, the reduced tempera-
ture T* = €/kgT is set to 1.

The bonding energy between adjacent monomers is
described by a FENE potential energy function
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where K,,,q is the spring force constant, and R is the
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maximum bond length. Throughout this work we use
Kbond = 10kBT, and R = 1.50.
The Coulombic energy of interaction is given by
iZiA
Uelec(”ij) = kBTZlZ] , 2)
rij

where the Bjerrum length A is defined as the distance at
which two unit charges have interaction energy kg7, i.e.,
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where € is the dielectric constant of the solvent. The
Bjerrum length is one of the key parameters considered
in this work, as it provides a measure of the strength of
electrostatic interactions vis a vis the thermal energy of
the system.

A finely discretized lattice is employed to improve the
performance of the simulations and to facilitate the study
of large simulation systems [20]. In this work, the diame-
ter o of a particle is divided into & = 6 lattice units. It has
been shown that this discretization level provides a faith-
ful approximation of the original, continuum model sys-
tem. The long-range Coulomb interaction is calculated
by the Ewald sum method with conducting boundary
conditions.

The Monte Carlo simulations presented here are con-
ducted in the canonical ensemble. Trial configurations are
generated by simple monomer displacements and by ex-
tended continuum configurational bias moves [21-24]. In
the latter moves, a portion of a polymer chain (usually
two to three beads) is first deleted, resulting in 2 (or 4, ifa
node is involved) open ends. These open ends are then
reconnected again by regenerating the missing portion of
the chain using configurational bias techniques. A self-
adaptive weighting function is used to guide the regen-
eration process [24].

The osmotic pressure of the system is calculated from
the virial equation, p = pkgT + W/V, where the internal
virial W is calculated from the sum of a pair virial
function w(r;;) = r;;dU(r;;)/d r;;. Figure 1 shows the
osmotic pressure as a function of the packing fraction for
different values of the Bjerrum length, where the packing
fraction is defined as 7 = (N,oge + #Nepain)0~/V. The
largest statistical uncertainties in osmotic pressure calcu-
lations (corresponding to the highest density and largest
Bjerrum length) are approximately 0.02. The pressure
becomes negative at sufficiently small packing fractions,
where elastic contributions to the free energy dominate
the behavior of the network (the low-density limit of this
network, when it is fully stretched, is n = 0.00031). The
pressure-density relationship shows a strong dependence
on the Bjerrum length (or the strength of electrostatic
interactions). At small Bjerrum lengths, which imply
either a solvent with a high dielectric constant or a high
concentration of added salts, the osmotic pressure is a
monotonically increasing function of density. The curve
crosses the zero-pressure line at a small packing fraction,
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FIG. 1. Osmotic pressure of model polyelectrolyte gels as a
function of packing fraction. Circles are data for Bjerrum
length A = 2, squares are data for A =5, and diamonds are
data for A = 10. The lines are drawn as a guide to the eye.

indicating that the gel is highly swollen. As the Bjerrum
length is increased, the pressure curve starts to develop
an unstable region, and crosses zero at two points: one at a
low packing fraction and one at a higher packing fraction,
implying the onset of a first-order phase transition. At
large Bjerrum lengths, the “S” shaped loop of the curve
becomes pronounced, and the isotherm crosses zero
only at high packing fractions, indicating that the gel
collapses.

We next proceed to examine the structure of the gel
along the two branches of the coexistence curve. For
A =5, these branches correspond approximately to n =
0.0067 and 1 = 0.106. Figure 2 shows the single-chain
structure factor of a gel for A = 5 at packing fraction n =
0.106. As the osmotic pressure data imply, the gel at these
conditions is collapsed. In the high k region (kR, > 1),
the structure factor scales as S(k) « k=%, where v is the
Flory exponent. This figure indicates that polymer strands
inside a collapsed network exhibit two distinct scaling
regimes: in the region 1 <k <4, the structure factor
scales as S(k) « k™!, which suggests that at short dis-
tances chains are highly extended. This is mainly due to
the electrostatic repulsion between charged monomers. At
longer length scales, in the region 0.3 <k < 0.6, the
structure factor scales as S(k) = k3, indicating that,
globally, chains adopt a tight globular conformation.
These two extremes of chain conformation coexist in
the same system. Figure 2 also shows the structure factor
of an uncross-linked polyelectrolyte solution at the same
conditions. At short length scales the uncross-linked
polyelectrolyte chains exhibit the same Flory exponent
as the gel does; at longer length scales, however, the
uncross-linked polyelectrolyte chains are almost Gauss-
ian and not as globular as in the gel.

Figure 3 shows the structure factor of a swollen gel at
A=15 and 7 = 0.0067. Under these conditions the
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FIG. 2. Structure factor of a collapsed gel and a polyelectro-
lyte solution for A = 5 at the same packing fraction n = 0.106.
The solid curve is the result for gel; the dotted curve is the
result for an uncross-linked polyelectrolyte solution.

system exhibits a uniform scaling behavior; the scaling
exponent is ¥ = (.72, indicating that the conformations
of polymer chains in a swollen gel are slightly more
expanded than those for a single chain in a good solvent.
The exponent found in this case is consistent with that
reported for a neutral polymeric gel [15]. Interestingly,
the structure factor of uncross-linked polyelectrolyte
chains under these conditions is almost the same as
that for a packing fraction 1 = 0.106. This density-
independent behavior can be explained by the fact that
for A = 5, uncross-linked polyelectrolytes start to form
aggregates; increasing the packing fraction only increases
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FIG. 3. Structure factor of a swollen gel and a polyelectrolyte

solution for A =5 at the same packing fraction 1 = 0.0067.
The symbols are the same as in Fig. 2.
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the number of aggregates in the system, but not the
structure of each aggregate. This behavior is different
from that reported by Stevens and Kremer [7] for
uncross-linked polyelectrolytes at lower values of A (A =
0.8330, to be precise).

In the counterion condensation framework proposed by
Manning and Oosawa [6,25,26], counterions are antici-
pated to form a thin condensation layer around the surface
of polyelectrolyte molecules when the Bjerrum length
exceeds the so-called Manning critical value. To interpret
our results in the context of condensation theory, we
analyze the counterion-counterion pair distribution;
if counterions form a permanent condensed layer on
the surface of the polyelectrolyte, these condensed coun-
terions should exhibit long-range correlations due to
the connectivity of the polymer. Figure 4 shows the
counterion-counterion pair distribution function for three
different values of Bjerrum length. For A = 1, this func-
tion increases monotonically with distance and ap-
proaches unity around r = 3¢, indicating that no
counterion condensation occurs. For A = 2, the function
increases at short distances, and exceeds 1 at r = 2. The
function remains slightly above unity even at distances as
large as r = 10; this broad peak suggests that counterion
condensation starts to occur at A = 2. For A = 5, the
distribution function shows a pronounced peak around
r = 2.10, and extends over long distances, indicating a
pronounced degree of condensation.

Figure 5 shows nonbonded monomer-monomer pair
distribution functions for several Bjerrum lengths. At
small distances (r < 1.50), the pair distribution decreases
as the Bjerrum length increases. This is expected because
the electrostatic repulsion becomes stronger. More inter-
estingly, at short distances the pair distribution functions
for A =5 and A = 10 are almost the same, while they
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FIG. 4. Counterion-counterion pair distribution functions for
gels at n = 0.0067, with various Bjerrum lengths. The solid
line is for A = 1, the dotted line is for A = 2, and the dashed
line is for A = 5.
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FIG. 5. Monomer-monomer pair distribution functions for
gels at n = 0.0067, with various Bjerrum lengths. The solid
line is for A = 1, the dotted line is for A = 2, the dash-dotted
line is for A = 5, and the dashed line is for A = 10.

change considerably when A increases from 1 to 5. This is
consistent with the charge renormalization anticipated in
counterion condensation theory.

At large distances (r > 20), these distribution func-
tions change in a different manner when the Bjerrum
length increases. The distribution function decreases
only slightly when the Bjerrum length changes from 1
to 2. However, when the Bjerrum length increases farther,
the distribution function also increases. This increase is
pronounced for A = 10. This unusual behavior indicates
that monomers, which carry like charges, start to effec-
tively attract each other at long distances whenever the
Bjerrum length is larger than 2. The onset of this effec-
tive attraction coincides with the condensation of counter-
ions; we attribute its origins to the bridging effect and the
strong correlations between charges resulting from coun-
terion condensation. Note that recent theories [27—-30] do
predict an attractive interaction between uncross-linked
polyelectrolyte chains. Given the fact that gels start to
exhibit a discontinuous volume change at A =5, it is
proposed that this effective attraction between monomers
is eventually responsible for the collapse of polyelectro-
lyte gels observed in our model.

In summary, our simulations have shown that a model
consisting of a charged polymer network and explicit
counterions is sufficient to give rise to a first-order swell-
ing transition. In the collapsed state, polymer strands
inside the gel exhibit two scaling exponents: at short
distances, chains are completely extended, and at long
distances chains are globular. In the swollen state, net-
work strands exhibit a single scaling exponent and are
extended beyond good solvent statistics. We find that
counterion-mediated interactions lead to effective attrac-
tions between network strands of like charge, eventually
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giving rise to the collapse of a gel at sufficiently low salt
concentrations.
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