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Growth of Walled Cells: From Shells to Vesicles
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The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to
giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as
elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic
deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for
cell size that are in quantitative agreement with the compiled biological data. Given these results,
possible shapes for growing cells are computed by analogy with those of vesicle membranes.
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All cells are enclosed by membranes. Many of them are
also bound by protective polymeric walls outside these
membranes. For instance, plant cells have walls com-
posed principally of cellulose. The walls sustain the cell
shapes as they are much thicker and stiffer than the
membranes. Other examples range from bacteria to giant
algae and include cochlear hair, fungi, and yeast cells. In
this Letter, I study the size and shape of such isolated
walled cells. Thompson [1] was a pioneer in explaining
forms in nature with physical arguments. He proposed
that surface tension alone would determine cell shapes,
and his ideas were extended to account for morphogenesis
in bacteria and fungi, in the so-called surface stress
theory [2,3]. A completely different approach for fungi
[4] was based on the concept of ballistic deposition of
new material on the wall from a ““material supply center.”’
The similarity of the growth patterns of the monocellular
algae micrasterias with dendritic or diffusion-limited
growth has stimulated many theoretical studies. The first
[5,6] relied on geometrical models which describe the
temporal evolution of the cell wall curvature. These geo-
metrical models were then coupled to the diffusion of
morphogens [7]. In the latest [8], the cell wall was con-
sidered as an elastic shell which deforms plastically under
the influence of a diffusing morphogen. Elastic ap-
proaches have also been used for bacteria [9], filamentary
bacteria [10], and the algae acetabularia [11]. Previous
studies obtained only qualitative results and were focused
on specific cell types. Here I consider the whole class of
walled cells. I demonstrate that a simple model leads to
estimations of cell sizes that are in quantitative agreement
with biological data and I investigate the possible shapes
of these cells.

The starting point is a simplified physical description
of a cell (Fig. 1). A liquid (the cytoplasm) is contained in a
thin elastic shell (the cell wall). The physical parameters
involved are the cell radius of curvature R, the wall
thickness #, the elastic modulus of the wall material E,
and the pressure P exerted on the wall (or the turgor
pressure). The turgor pressure and the thickness of the
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wall are mainly regulated by the cell physiology. In the
case of plant cells, it has been established [12] that growth
is similar to plastic deformations: the wall behaves as
an elastic material below a critical strain a, and grows
above by yielding to stress. So, the wall is modeled as a
perfectly plastic material [13], which yields in extension
and not in compression (see Fig. 1). The cell can also
regulate the wall plasticity [12], using hormones such as
auxin. When a piece of wall is formed, it has a sponta-
neous radius of curvature R, that it would hold in the
absence of external forcing. As there are no other macro-
scopic length scales, one expects Ry~ R. Finally, the
growth is slow: the characteristic time for growth is
much larger than the time needed to reach mechanical
equilibrium; consequently, the cell is assumed to be in
mechanical equilibrium.

I first estimate the cell mechanical energy. A thin shell
has two modes of deformation, stretching and bending
[14]. The stretching energy is proportional to the strain
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FIG. 1. Physical picture of cell growth. (a) Schematic of a
model cell with radius of curvature R and wall thickness #,
whose growth is driven by the inner fluid pressure P. (b) Stress-
strain o(a) (solid line) and growth rate G(a) (dashed line)
curves for the cell wall, which is assumed to be a perfectly
plastic material yielding only in extension. The wall is elastic
(with modulus E) for a strain a smaller then the yield threshold
a, and it grows above. If the stress is decreased, the released
elastic energy (the shaded area) is 1/2 X Eaﬁ.

© 2003 The American Physical Society 018104-1



VOLUME 91, NUMBER 1

PHYSICAL REVIEW LETTERS

week ending
4 JULY 2003

squared, but if the material undergoes plastic deforma-
tions (see Fig. 1), then energy is stored only below the
yield strain a,, so the stretching energy (per unit area)
scales as

E, ~ Ehd>. (1

The elastic energy (per unit area) for bending is propor-
tional to the square of the difference between the mean
curvature and the equilibrium curvature 1/Ry ~ 1/R,

E, ~ ER3(1/R — 1/R,)* ~ EW3 /R~ )

In bending, the outer half of the wall (with respect to the
center of curvature) is elongated while the inner half is
compressed. When plastic flow occurs, it is restricted to
the outer wall, because the material is considered to yield
only in extension (Fig. 1). In this case the effective thick-
ness is reduced in the bending energy; however its order of
magnitude remains the same. Finally, the potential en-
ergy (per unit surface) corresponding to the turgor pres-
sure is proportional to the volume to area ratio,

E, ~ PR. (3

The yield strain for most materials is smaller than
1072, while the aspect ratio #/R for most cells varies
between 1072 and 10~!. So, it is reasonable to consider
the limit where a, K h/R, so that E; < E,,. In this case,
a characteristic cell size results from the balance between
bending and pressure (£, ~ E,):

il @

The best fit to the data compiled in Fig. 2 gives @ = 4.0.
This value is larger than the values @ = 0.58 and a =
0.96 computed in the second part of this paper, but it has
the same order of magnitude. This agreement is good
given the simplicity of the model; however one might
notice a departure from this scaling at small radii
(Fig. 2). This motivates the study of the opposite limit
a, > h/R for bacteria and cochlear hair cells. Indeed,
experiments by Koch (see Ref. [9]) have shown that the
typical yield strain for Bacillus Subtilis is a, = 0.45. In
this limit, stretching balances the turgor pressure. The
tension of the shell scales as the yield stress y ~ Eha,
(see Fig. 1). The Laplace law requires P ~ /R, so that

E
R=Bh. (5)

B should be proportional to a,. The fit to the experimental
data (Fig. 3) gives 8 = 1.0, of the same order as the values
B = 1.8 and B = 0.9 estimated below. It has been im-
plicitly assumed that the yield strain a, varies very little
for this class of cells. The forces generated by electric
charges have also been neglected, although they could be
comparable to the elastic forces [9].
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FIG. 2. Test of the scaling law Eq. (4): cell radius R as a
function of h(E/P)'/3 (h is the wall thickness, E its elastic
modulus, and P the inner pressure). The data were compiled
from the literature. When not listed, the lengths were measured
from the published photographs. All these cells are cylindrical
except the spherical yeast. R is the radius of the cylindrical part
of the cell or the radius of the sphere. When E or P was not
available, they were replaced by their values for similar spe-
cies. Alga cells: Chara corallina (O) [15,16], Nitella (V) [17-
19], and Acetabularia acetabulum (<) [15,16,18—20]. Root
hair: Arabidopis thaliana (A) [15,18,21,22]. Yeast: Saccha-
romyces cerevisiae (H) [23]. Fungi: Phycomyces (X)) [24—-26]
and Saprolegnia ferax (®) [24,27,28]. Guinea pig cochlear
outer hair cell (@) [29]. Bacteria: Magnetospirillum gryphis-
waldense (B) [30], Bacillus subtilis (®) [2,9,31], Escherichia
coli (A) [32], Pseudomonas aeruginosa (V) [32], and Saccha-
ropolyspora erythraea ([-]) [30,33]. Gas vesicles (included for
comparison): Microcystis spirillum (+) [34] and Anabeana flos-
aquae (X) [34] are small crystalline vesicles found in some
bacteria. Solid line: best fit to Eq. (4) of all data except filled
symbols and gas vesicles.

As the scaling laws are in agreement with biological
data, I now investigate a more quantitative description of
cell shapes. The mechanical energy is the sum of the
bending, stretching, and pressure energies,

1 1
EZEK](C_CO)ZdA+§E]0-UaUdA_PV (6)

The integrals are computed over the cell wall. ¢ is the
wall mean curvature, ¢, its spontaneous curvature, o;;
the stress tensor, a;; the strain tensor, and V the cell
volume. The bending modulus is [14]

_ERW
12(1 — %)’

with v being the Poisson ratio of the wall material. Most

biological materials are nearly incompressible, so that

v = (0.5 will be used for numerical estimates in the fol-
lowing. The stress and strain tensor are related by [14]

K

(N

Eh
Tij = 1——;/2[(1 — vay; + vaydi;l ®)

Here §,; is the identity tensor.
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FIG. 3. Experimental testing of the scaling laws Egs. (4) and
(5) for cell radii. Cell aspect ratio R/h as a function of the
modulus to pressure ratio E/P. Same symbols as in Fig. 2. Solid
lines: best fit of filled symbols to Eq. (5) and of all other
symbols except gas vesicles to Eq. (4).

I first consider the case where bending balances turgor
pressure. Then, the stretching is neglected and the energy
has the same form as the energy of a bilayer liquid
membrane [35], without the surface tension term. While
a complete model should account for variations in ¢, [36],
I assume for the sake of simplicity that that ¢, is constant
along the wall. The simplest shape for the wall is a sphere
of radius R. The equilibrium condition reads [37]

PR3/k = coR(cyR — 2), 9)

so that ¢, > 2/R. One would expect ¢, to relax towards
the actual curvature 2/R [8] and ¢, to assume the smallest
possible value. Solving Eq. (9) for ¢, yields ¢y = f(R)
whose minimum is reached at a radius R such that
PR?/k = 8. So, the largest radius R, which a spherical
cell would reach corresponds to a prefactor o = 0.96
(using » = (.5) in the first scaling [Eq. (4)].

If the spontaneous curvature c, is large enough, it is
known [38] that spherical vesicles are first unstable to
prolate ellipsoid shapes. Recall that the wall growth rate
increases with the stress which is proportional to the
curvature (see Fig. 1). If the cell adopts the shape of a
prolate ellipsoid, then the growth rate is larger at the tips
(they have the largest curvature). So the cell will become
more and more elongated. This is consistent with the
observation that most cells which satisfy the scaling of
Eq. (4) grow in tubular forms (capped cylinders).

As a limiting case, I now examine the possibility of
tubular growth within the present framework. One can
seek axisymmetric shapes intersecting the symmetry
axis z and matching (possibly for z — ©0) a cylinder of
unknown radius R. Let ¢ be the angle of the surface
normal to the z axis and r the radial coordinate. If the
curvature d(sing)/dr + sings/r is bounded then Ref. [37]
gives
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The primes stand for derivatives with respect to r and
lengths are nondimensionalized by the radius R. The first
boundary condition at the axis is (0) = 0. Following
biological observations [4,39], most of the growth occurs
at the tip. As a consequence the unknown spontaneous
curvature ¢, should be equal to the curvature at the tip:
¥'(0) = cyR/2. At the cylinder, (1) = 7/2, and the
curvature is 1 (in R units): d(sing)/dr(r =1) = 0.
There are two extra boundary conditions because both
coR and PR?/k are unknown. A numerical shooting leads
to the solution represented in Fig. 4 where z(r) is obtained
by integration:
dz
. tani. (11)
The values ¢, = 2.34/R and PR?/k = 1.79 are found.
This is consistent with the scaling ¢y ~ 1/R used in the
analysis. Using a reasonable Poisson ratio » = 0.5, one
gets as a prefactor of Eq. (4) « = 0.58. Moreover, the re-
sulting cylindrical shapes are stable as coR = 1 (see [38]).
In the second case, stretching balances pressure and
the first term in Eq. (6) is negligible. If growth occurs

all over the wall, the yield strain is reached: a;; = a,9;;.

Equation (8) gives an isotropic stress o;; = y§;;, and
i
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FIG. 4 (color online). Shape z(r) of a tip growing cell accord-
ing to Egs. (10) and (11). The surface is axisymmetric with
respect to the z axis and matches onto a cylinder. Lengths are
nondimensionalized by the radius of the cylinder. (a) 3D view.
(b) Cut along a plane of symmetry.
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there is an effective surface tension

Ehay
1—v

Y= (12)
The problem is equivalent to soap bubbles with internal
pressure; therefore the only possible shapes are spheres
such that P = 2y/R, so that the prefactor of the second
scaling [Eq. (5)] is B = 1.8 (using v = 0.5). It is likely
that anisotropies are necessary to explain the cylindrical
shapes of many bacteria [36]. If the shape is cylindrical,
P = vy/R, and a smaller estimation of the prefactor is
obtained: 8 = 0.9.

To summarize, the size of isolated walled cells obey
one of two scalings depending on the plastic properties of
the wall. In the first case, bending balances turgor pres-
sure and tip growth occurs. In the second case, stretching
balances turgor and there is diffuse growth. A number of
physical effects have been neglected but will be the sub-
ject of future work [36]. In particular, the spontaneous
curvature of the wall is generally not constant and its
temporal evolution should be considered. Also, anisotro-
pies in growth or in the wall elastic properties are likely
to be important for cell shapes especially in the second
class of cells. The subject seems promising as this simple
model accounts for many biological observations.

I am indebted to G. Toole and A. Smith for details on
their data. I am grateful to Y. Couder and M. Ben Amar
for getting me interested in plant and tumor growth, and
to J.W. M. Bush for a critical reading of the manuscript.
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