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Optimal Control of Neuronal Activity
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We investigate the optimal control of neuronal spiking activity for neurons receiving a class of
random synaptic inputs, characterized by a positive parameter a. Optimal control signals and optimal
variances are found exactly for the diffusion process approximating an integrate and fire model. When
synaptic inputs are ““sub-Poisson” (a < 0.5), we find that the optimal synaptic input is a delta function
(corresponding to bang-bang control) and the optimal signal is not unique. Poisson synaptic input is the
critical case: The control signal is unique, but the control signal is still a delta function. For “‘supra-
Poisson” (a > 0.5) inputs, the optimal control is smooth and unique. The optimal variance obtained in
the current paper sets the lowest possible bound in controlling the stochasticity of neuronal activity. We
also discuss how to implement the optimal control signal for certain model neurons.
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Introduction—The effective control of neuronal activ-
ity and, hence, that of nervous system function is one of
the most exciting topics in theoretical neuroscience
(Chapter 12 in [1], Chapter 17 in [2]) with great potential
for applications in health care [3]. An extremely success-
ful example is the current treatment of Parkinson’s dis-
ease [4]. In basic neuroscience, mammalian and other
nervous systems must have developed in such a way as
to enable the effective control of neuronal activity in
order to achieve optimal performance. A dilemma con-
cerning the achievement of optimal control of neuronal
activity lies in the fact that most neurons in the central
nervous system seem to receive synaptic input stochasti-
cally and as a consequence fire randomly [2,5].
Nevertheless, it is clear that an accurate control is per-
formed in some sense. How the nervous system tunes its
activity so that an animal or human can precisely and
promptly respond to its environment is still an unknown
and challenging problem, and doubtless involves synaptic
plasticity. In the current Letter, we theoretically inves-
tigate how to optimally control a given neuron’s spiking
activity, in the case that it is driven by stochastic synaptic
inputs. Optimal control is defined as the stochastic input
which minimizes the variance of the interspike interval
for a given mean interval and, hence, firing rate of the
neuron.

The actual technique we use here to tackle the problem
is transparent, but the conclusions are interesting and
clear-cut. In the model presented below, a neuron’s behav-
ior depends on a property of the input, which may be
temporally nonhomogeneous or homogeneous. The input
and, hence, the behavior is characterized by a parameter
a > 0, such that, when @ = 1/2, the synaptic input cor-
responds to Poisson processes; when a < 1/2, it is called
sub-Poisson input; when a > 1/2, it is supra-Poisson (see
below for more details).
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We find that when a < 1/2 the optimal control signal is
a delta function and the optimal output variance is then
zero. When a = 1/2, the Poisson input case, the optimal
control signal is a delta function at the starting point of
the control and the optimal variance is positive. When
a > 1/2, the optimal variance is positive and exact ex-
pressions for the optimal control signal and the variance
are obtained. It is interesting to note that, when o = 1/2,
the optimal variance is in agreement with the empirical
Fitt’s law: The longer the time an action is required, the
smaller the variance [6].

The optimal variance obtained here exhibits some
interesting phenomena. When a = 1/2, the optimal vari-
ance is not continuous and, when « = 1, the derivative of
the optimal variance is not continuous. Furthermore,
when a = 1, the optimal variance may attain a local
minimum. The theoretically obtained optimal variance
sets the lowest bound for the control problem. Finally, we
also discuss how to actually implement the optimal con-
trol signal for certain model neurons.

The Model—The model neuron we use here is the
classical integrate-and-fire model [7]. When the mem-
brane potential V(#) is below the threshold Vi, it is
determined by dV (1) = —{[V(t) = Vies ]/ v}dt + dl,(1)
t >0 with V(0) = Ve < Vipre» Where 7y is the decay
time constant and V. is the resting potential. The syn-
aptic input current is Iy, (1) = Y7, a,E;(1) — jq_:1 b;1;(1)
with E; = {E;(1), t = 0}, I; = {I;(1), t = 0} as independent
and nonhomogeneous point processes with rates Ag;(7)
and A, (), respectively [5], a; > 0, b; > 0 are the mag-
nitudes of each EPSP (excitatory postsynaptic potential)
and inhibitory postsynaptic potential, and p and g are the
total number of active excitatory and inhibitory synapses.
Once V() crosses Vi, from below a spike is generated
and V is reset to V. This model is termed the leaky
integrate and fire (IF) model. The interspike interval of
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efferent spikes is the random variable T = inf{r:V(¢) =
Vel V(0) = V i} i.e., the first time when V(¢) crosses the
threshold V.

In the following, we further assume that V. = 0, p =
g, a=a;=>b;,, i=1,..., p, and use diffusion approxi-
mations to approximate synaptic inputs [7]. However, the
assumption of equal strengths for the excitatory and
inhibitory synaptic drives may be easily relaxed. Thus,
we put dly, (1) = a(l — r)A(n)dt + av'1 + r**A%(1)dB(t),
where A(1) = pAg; = pAg, the total synaptic input rate,
and A;; = rAg; for i =1,..., p with r as the ratio be-
tween inhibitory and excitatory inputs, B = {B(¢), r = 0}
is standard (mean zero, variance ¢ at time f) Brownian
motion and @ > 0. In the sequel, we confine ourselves to
the case of r = 0 and all results can be easily generalized
to the case of r # 1. When @ = 1/2, the input is derived
from a Poisson process and the index of dispersion of the
input (variance/mean) is 1. When « > 1/2, the index of
dispersion is A2*~!, we call it supra-Poisson input and,
when o < 1/2, it is termed sub-Poisson input. The larger
the value of «a, the more randomness there is in the
synaptic inputs. If a <1/2, the variance is less than
that of a Poisson input and, when « > 1/2, the variance
is greater than in the Poisson case when A(f) > 1. For a
more detailed discussion on the relationship between the
parameter « and renewal processes, we refer the reader to
[7], in particular, Egs. (10.16) and (10.17).

For a fixed time 7' ms, let us define I(A) = var[V(T)],
i.e., I(A) is the variance at the end point 7', of the mem-
brane potential with the input signal A(f). Here is the
problem we are going to address in the current paper.

Control problem: To find a synaptic input A*(s) satisfy-
ing

<V(Tf)> = Vthre: (1)
I(AY) = m/\in[()t). 2)

The meaning of the optimal control problem is as follows.
Suppose that we intend to drive a neuron to fire with a
fixed frequency, say 1000/7, Hz so that we can fix the
time 7. Equation (1) satisfies the requirement. The sec-
ond requirement Eq. (2) indicates that we intend to de-
termine an optimal (control) signal so that the variance of
the membrane potential at time T attains its minimum
value, among all possible control signals. Here all pos-
sible control signals [A(#)] mean all possible nonnegative
function of time ¢ since A(f) is the total firing rates of
input neurons. The more difficult mathematically and
indeed more realistic problem is to insist that with a
stochastic input E[T] = T, and seek to minimize /,(A) =
var[T]. Although minimizing the variance of the mem-
brane potential is not the same as minimizing the vari-
ance of the interspike interval, it is usually the case that
the relationship between them is monotonic [see, for
example, Eq. (9.106) in [7]]. Hence, we proceed on the
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reasonable assumption that, when the variance of the
membrane potential reaches its minimum value, the cor-
responding variance of interspike intervals attains its
minimum as well. We will consider the more general
problem in a later article.

We fix a few parameters in the simulations: y = 20 ms,
a=0.5mV, V. =0mV, and Vy, = 20 mV, these val-
ues being appropriate for some pyramidal neurons in the
mammalian neocortex [8]. In the simulations, 2000
spikes are generated to estimate various quantities.

Optimal control—For the optimal control problem
posed in the previous section, fortunately we are able to
find a complete and analytical answer.

Theorem 1 (Optimal Control Signal)

For a > 1/2, the unique optimal control signal X*(s) is

(2(1 - 2) Vthre

A(s) =
Qa — l)ay[l — exp(— ];((;5_12))”
Tf - S
X exp<7(2a — 1)7/)' (3)

In particular, when a =1, we have A*(s)=

[Vawe/ (@T )] expl(T; = )/ 7]

For a =1/2 the unique optimal control signal
A*(s) = 8¢(s), the delta function at time zero.

For a <1/2, the optimal control signal A*(s) = 8,(s),
the delta functionat y € [0, Tf]. Hence, the solution is not
unique.

We refer the reader to [9] for detailed proofs.

Theorem 1 tells us that, when « > 1/2, the optimal
control signal is a smooth function of time but, when @ =
1/2, the optimal control signal is degenerate. It is easily
seen from Eq. (3) that, when « decreases to 1/2, the
optimal control signal will gradually converge to the delta
function at the original. When « increases to infinity, it
will become flat.

As a direct consequence of Theorem 1, we have the
following conclusions.

Theorem 2 (Optimal Variance)

For a > 1/2,
20 —2  |2a-1
ITA* — 2*20(‘/20(
[ (S)] a thre (2a _ 1)')/
T:2a —2) 1-2a
f
X 1-— - . 4
eIl @
In particular, when o = 1, we have
V2
I[A*(5)] = e, )
Ty

For a = 1/2, I(A") = aVipee exp[ —(Ts/y)].

For a <1/2, I(A*) = 0.

From the numerical example plotted in Fig. 1, we
conclude that when T, <24 the optimal variance is
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FIG. 1 (color online). Optimal variance against a for T, =
20, 40, 100, 500. The right panel is the same as the left panel,
but 7, = 20 is shifted towards left with 0.3 units, 7, = 40 with
0.2 units, and T; = 100 with 0.1 units.

monotonic but, when Tf > 24, the optimal variance has
another (local) minimum point at a = 1.

The optimal variance exhibits two singular points. The
second one is at &« = 1, where we see that the derivative of
the optimal variance is not continuous, reminding us of a
first order phase transition point. The first one is at @ =
0.5, as we have theoretically described in Theorem 2.
When a < 0.5, the optimal variance is zero but, when
a = (.5, the optimal variance is positive. In Fig. 1, when
T; = 20, the optimal variance for @ = 0.5 is approxi-
mately 3. Hence, the variance is discontinuous.

If we think of a as an index of the randomness of
synaptic inputs (the larger the «, the more randomness the
input), Fig. 1 reveals another interesting phenomenon:
multipoint stochastic resonance. The optimal variance is
naturally a measurement of the quality of the output
signal. The larger the variance, the worse the quality of
the efferent signal. Figure 1 indicates that, at the points
a < 0.5 and @ = 1, the optimal variance attains its local
minima. Although stochastic resonance has been exten-
sively studied in the literature, to the best of our knowl-
edge, the multipoint stochastic resonance as shown in
Fig. 1 has not been reported before.

The results of Fig. 1 are also in accordance with Fitt’s
law [6], which implies that the shorter the time an action
is required, the larger the variance of the action. Figure 1
clearly shows that the larger the T, the smaller the
optimal variance. Our results, hence, provide neuronal
level evidence for Fitt’s law.

Another interesting phenomenon to be noted is that the
variances are almost identical when « is between 0.5 and
the thick dotted vertical line, although they are different
at @ = 0.5 [see Fig. 1 (right)]. In particular, when o = 1,
the optimal variance is independent of the magnitude of
EPSPs and the decay constant y [see Eq. (5)]. In general,
the optimal variance plotted in Fig. 1 gives the best
accuracy we can achieve in the framework of our setup.

Neuronal implementations.—Having found the optimal
control signals, we now turn our attention to how to
implement them in neuronal models; that is, how to carry
out the actual control of neuronal activity. We simulate the
IF model, with synaptic inputs given by A* defined in
Theorem 1.

In Fig. 2, the histograms of interspike intervals (ISI) of
an IF model are depicted. It is interesting to note that not
every run of control is successful. It is easily seen from
the results in the previous section that, if the neuron fails
to fire within a time window, the probability of firing a
spike becomes rare. We restart the simulation if =
50 ms, i.e., the input signal is A*(¢) with ¢ =< 50. The ratio
in Fig. 2 is defined as the number of successful runs
divided by total runs. Two thousand runs are carried
out for each histogram. For example, in Fig. 2 (right),
we have 0.7265 X 2000 spikes. The mass of the histogram
moves to the left when a decreases. This is in agreement
with the optimal control signals in the previous section.
Note that we intend to control the neuron to fire with a
frequency around 40 Hz (7 + refractory period =
25 ms) in Fig. 2. The output frequency in Fig. 2 is around
39, 41, and 37 Hz, respectively.

When a = 1/2, it is easily seen that the model is not
controllable. From the results in the previous section, we
know that we have to inject a huge current at the begin-
ning of the control. The current will drive the neuron to
fire and so T ~ 0.

When a < 1/2, the control signal is not unique. Hence,
we can inject current at the end of the control period, i.e.,
at time T'y. For a network of spiking neurons, this can be
achieved by synchronous bursting.

As we have mentioned before, « is a parameter which
characterizes the variability in the synaptic input. Our

600 600 600
Ratio=0.7885 Ratio=0.8175 +
7% Frequency=38.5133 Hz 6500 Frequency=40.6093 Hz| ~ _500 Ratio=0.7265
2400 CV=0.7882 2400 CV=0.8056 @ Frequency=37.4413 Hz
= o - 2400
c . ° o=1.4 . o CV=0.8046
©300| ©300 &300 a=1.0
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FIG. 2 (color online). Output interspike intervals histograms vs time (ms) for « = 1.2, 1.4, and 1.0. Here 2000 runs are carried
out for each « and ratio = (number of successful runs)/2000. The number of unsuccessful runs are marked by “+”. A refractory
period of 5 ms is included in calculating the efferent firing rates (frequency). CV is the coefficient of variation of the ISI. The value
of Ty = 20 ms.

!
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conclusions above imply that, when the variability is low
(a = 1/2), the optimal output variance is zero, and the
optimal control signal is degenerate. From data in [10], it
seems that some motor neurons are sub-Poisson, with a
CV (coefficient of variation, ie., standard deviation/
mean) of interspike intervals being less than 1. When
the variability is high (@ > 1/2), we can actually control
the neuronal activity and the optimal control signal is
exactly given in Theorem 1. From data in [11], it seems
that a neuron in the primary and inferior temporal visual
cortices operates in the region of a > 1/2, the supra-
Poisson region (with a CV of interspike intervals being
1.91 and 1.84, respectively). Thus, results in Theorem 1
provide us with an explicit way to control neuronal
activity.

Discussions.—We have presented a control theory for
neuronal activity. Analytically, both the optimal control
signal and the optimal variance are obtained. How to
implement the optimal control in neuronal models was
also discussed.

It is easily seen that we can implement the optimal
control in a biologically realistic neuron as well. Of
course, the optimal control signals might be totally differ-
ent from the one we obtained here. In fact, for a biophys-
ical model, we can expand the solution of it using, for
example, the Volterra series. The optimal control problem
is then similar to Eq. (3.6) in [9], but with a series of
kernels. It is even reported in [12] that a single kernel can
reproduce the Hodgkin-Huxley model behavior. Hence,
our approach is generic and we can apply the similar
technique developed here to biophysical models. On the
other hand, we have seen a growing interest in the appli-
cations of spiking (IF) neurons and (IF) neuronal net-
works [1]. The theory developed here can be directly
applied to controlling spiking neurons and neuronal net-
works composed of them.

Stochastic optimal control theory is a well-developed
area [13]. Unfortunately, the theory usually leads to the
Hamilton-Jacobi-Bellman equation [13] which is theo-
retically almost impossible to tackle. Furthermore, it is
not applicable to our problem since the optimal control
signals obtained here are degenerate in some cases (see,
for example, Theorem 11.1 in [13]). As usual, a novel
theory such as we have developed here can serve only to
introduce more problems. For example, we have deliber-
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ately introduced 2 times here: T, the actual interspike
interval, and T, an average time of intervals. We have
then considered the control problem based upon the fluc-
tuations of the membrane potential. It would be an illu-
minating issue to consider how to control the fluctuations
of T. Another issue is how to control the neuronal activity
with reversal potentials [7]. Finally, we point out that it is
disappointing that when « < 1/2 the control problem is
degenerate or uncontrollable, although it is theoretically
interesting.
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