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An example is given of an interaction that produces an infinite amount of entanglement in an
infinitely short time, but only a finite amount in longer times. The interaction arises from a standard
Kerr nonlinearity and a 50=50 beam splitter, and the initial state is a coherent state. For certain finite
interaction times multidimensional generalizations of entangled coherent states are generated, for
which we construct a teleportation protocol. Similarities between probabilistic teleportation and
unambiguous state discrimination are pointed out.
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j�2i � j�ij�i � exp�i��j � �ij � �i; (1)
potentially have log2M ebits of bipartite entanglement. In
particular, they reach that limit for large �=M.
Entangling operations are necessary for universal
quantum computation [1] but also play an important
role in quantum communication. For example, teleporta-
tion [2], entanglement distillation [3], and quantum re-
peaters [4] all rely on entangling operations.

Questions concerning the entangling power of given
unitary operations or of given Hamiltonians are thus
relevant from both theoretical and practical points of
view and have been considered recently in the context
of finite-dimensional systems [5–7]. But for the electro-
magnetic field, which is clearly the system of choice for
quantum communication, the associated Hilbert space is
infinite. Entanglement in infinite Hilbert spaces has pe-
culiar properties [8–10]. For example, there is always a
state with an arbitrarily large amount of entanglement
arbitrarily close to a separable state. Some of these
anomalies can be mitigated by imposing energy con-
straints on the states considered [9]. Here we confirm
this behavior of entanglement in infinite-dimensional
systems. In fact, we show that a standard nonlinear optics
interaction, arising from a Kerr nonlinearity, followed by
a simple interaction with a beam splitter is capable of
generating an arbitrarily large amount of entanglement
E � log2M in an arbitrarily short time � � O�1=M�,
starting from a coherent state with energy j�j2 �
O�M2�. Note that squeezing or down-conversion, in con-
trast, are only capable of generating Gaussian states from
coherent states, whose entanglement after passing beam
splitters (and other linear-optics elements) is much better
behaved [11]. For instance, the entanglement of a two-
mode squeezed state simply increases monotonically with
the squeezing parameter, which in turn increases with the
interaction time.

It turns out that for certain specific finite interaction
times the interaction we will consider generates multi-
dimensional generalizations of so-called entangled co-
herent states. Entangled coherent states are of the
(unnormalized) form
0031-9007=03=91(1)=017902(4)$20.00 
with j�i a coherent state with amplitude �. As far as the
author knows, this type of states was discussed first in
1986 [12], and the name entangled coherent states was
coined in Ref. [13]. There has been a lot of interest in the
quantum-information processing capabilities of such
states after it was found that the states with � � 	
possess exactly one ebit of entanglement [14] irrespective
of the amplitude �. Teleportation [15], entanglement
purification [16], Bell-inequality violations [17], and uni-
versal quantum computing [18] have all been discussed in
this context.

Here we study a particular multidimensional general-
ization of the states (1) of the (unnormalized) form,
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with M > 1 an integer. These states should not be con-
fused with multimode generalizations of entangled coher-
ent states of the form (for their properties see, for
example, [19])

j�Mi � �j�i�	M � exp�i���j � �i�	M; (3)

which can be trivially generated from a state (1) by
mixing it with the vacuum on beam splitters, and do not
possess more than one ebit of bipartite entanglement. The
states (2), on the other hand, are still two-mode states, but
may contain more than one ebit of entanglement. We
choose to restrict the form of (2) to containing only
symmetric coherent states with coefficients of equal mag-
nitude, because that is the type of states that can be
generated by propagating a coherent state through a me-
dium with a Kerr nonlinearity (see below). Such states
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Consider the following unitary operator:

UA;B��� � exp

�
	
4
�ayb� bya�

�
exp��i�ay2a2�; (4)

where � represents a dimensionless time, and ay; a; by; b
are the creation and annihilation operators for two modes
A and B, respectively. Physically, the first term corre-
sponds to a 50=50 beam splitter, and the second describes
the propagation of mode A through a Kerr medium, for
which the effective Hamiltonian is

H � �h�ay2a2; (5)

with � a rate determined by the appropriate third-order
nonlinear susceptibility of the medium. (Note that such
an interaction has been considered for the generation of
entangled coherent states [20].) We will be interested in
the entangling capabilities of UA;B���. The class of initial
states of modes A and B is chosen from product states
such that for � � 0 no entanglement is generated. It is
easy to see that any product of two coherent states will fit
the bill. Here we take a subclass, namely j�iA;B �
j�iAj0iB with arbitrary �, as initial states. It is straight-
forward to expand the state

j����iA;B � UA;B���j�iAj0iB (6)

in number states and subsequently evaluate the entangle-
ment EA;B��� between modes A and B as a function of
time. Here, however, we give a more elegant description
valid at certain times �. This treatment is based on
Ref. [21]. First, consider the second term in Eq. (4), and
write it as

UA��� � exp��i�N̂NA�N̂NA � 1��; (7)

where N̂NA � aya. The operatorUA becomes periodic in N
with period M (that is, it becomes invariant under N̂NA !
N̂NA �M) at times � � 	=M if M is an odd integer. This
implies one can write down Fourier series as follows [21]:
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Similarly, for even values of M one has
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so that we can expand
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The coefficients fq are not explicitly evaluated in
Ref. [21], but one can actually derive them (see be-
low [22]),
017902-2
f�o�q �
1�����
M

p exp

�
	iq�q� 1�

M

�
exp

�
�	iK�K � 1�

M

�
;

f�e�q �
1�����
M

p exp

�
	iq2

M

�
exp��	i=4�;

(11)

where in the first line K is such that M � 2K � 1 for odd
M. If one starts with a coherent state of mode A at time
� � 0, j �0�i � j�i, this then immediately leads to the
following time evolution under UA:

UA�	=M�j�iA �
XM�1

q�0

f�o�q j� exp��2	iq=M�i

for M odd;

UA�	=M�j�iA �
XM�1

q�0

f�e�q j� exp�	i�1� 2q�=M�i

for M even:

(12)

If one subsequently takes these states and splits them on a
50=50 beam splitter with the vacuum, the output state is
an entangled state of the form (2)

j�Mi �
XM�1

q�0

f�o�q j� exp��2	iq=M�ij� exp��2	iq=M�i;

(13)

for M odd with � � �=
���
2

p
, and

j�Mi �
XM�1

q�0

f�e�q j� exp��2	iq=M�ij� exp��2	iq=M�i;

(14)

for M even, where now � � � exp�i	=M�=
���
2

p
. These are

the states j��	=M�iA;B of Eq. (6) we were looking for.
Now consider the entanglement between modes A and

B in the states (13) and (14). In the limit of large �, more
precisely, for �=M � 1, the coherent states appearing in
these superpositions become orthogonal. The entangled
states, therefore, are already written in their Schmidt
decomposition form, and it is straightforward to calculate
their entanglement. In fact, since all coefficients fq have
the same magnitude 1=

�����
M

p
, one sees that one ends up with

a maximally entangled state in M dimensions (spanned
by the M symmetric coherent states), with EA;B�	=M� �
log2M ebits. This fact is paradoxical at first sight, since
the entanglement increases with M, that is, with decreas-
ing interaction time. However, this paradox is resolved
easily by noting that for fixed � the coherent states
j� exp�	iq=M�i become nonorthogonal for sufficiently
large M so that the entanglement is, in fact, smaller
than log2�M�. Thus, just as in [9], an energy constraint
saves us from the more embarrassing peculiarities of
entanglement in infinite dimensions. In fact, there is an
optimal time � for which the entanglement is maximal for
fixed�. This is illustrated in Fig. 1. Here, for several finite
values of � we evaluate the entanglement numerically by
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FIG. 1. Entanglement as a function of time �=	 for j�j2 � 1
(circles) and j�j2 � 10 (crosses), where �=	 � 1=M with M an
integer > 1. At these times the entangled state is an
M-dimensional entangled coherent state. The function f��� �
log2�	=�� is given as reference.
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expanding the reduced density matrix of either of the two
subsystems in the number-state basis.

For � small, there is no entanglement as the state j�Mi
reduces to the vacuum state. This follows immediately
from the fact that the evolution operator UA;B commutes
017902-3
with the sum of the number operators, aya� byb, so that
the total photon-number distribution does not change.

For a large subset of pairs of values of � and M, the
entangled states (13) or (14) possess more than one ebit of
entanglement. As such, they can be used for teleporting at
least one qubit. Here we give a simple protocol for even
values of M that works perfectly in the limit of large �,
while for smaller � it works only partially, namely, with a
probability less than unity and with a fidelity less than
unity. It generalizes the protocol of [15].

Suppose Alice and Bob share an entangled state
j�MiA;B of the form (14) (M is even) between modes A
and B, and Alice possesses an arbitrary state of the form

j iC �
XM�1

q�0

Qqj� exp��2	iq=M�iC (15)

that she wishes to teleport to Bob. Alice first uses beam
splitters to make L � M=2 ‘‘diluted’’ copies of both the
state to be teleported (ending up in modes Ck for k �
0; . . . ; L� 1) and of her half of the entangled state (end-
ing up in modes Ak for k � 0; . . . ; L� 1) by the process

j� exp�i��i�j0i�	L�1 � �j� exp�i��=
����
L

p
i�	L: (16)

Then she applies a phase shift over an angle �k �
2k	=M to the modes Ak and, in order to perform her
Bell measurement, subsequently combines the modes
Ck and Ak on L 50=50 beam splitters. If we call the out-
put modes Gk and Hk for k � 0; . . . ; L� 1, the resulting
state is
XM�1

q�0

XM�1

p�0

	L�1
k�0 f

�e�
q Qpj� exp��2	iq=M�iB 	 j�fexp��2	iq=M� � exp��2	i�p� k�=M�g=

������
2L

p
iGk

	 j�fexp��2	iq=M� � exp��2	i�p� k�=M�g=
������
2L

p
iHk
: (17)
Alice now performs photon-number measurements on all
2L � M output modes. She cannot find a nonzero number
in every mode. But suppose she finds nonzero numbers of
photons in all but one mode, say, modeHm. Then the only
terms that survive the sums over q and p in (17) are those
for which exp��2	iq=M� � exp��2	i�p�m�=M� � 0,
that is, p�m � q� LmodM. The state at Bob’s side
reduces to (unnormalized)

XM�1

q�0

f�e�q Qq�L�m exp

�
�2	iqNtot

M

�
j� exp��2	iq=M�iB;

(18)

with � denoting addition modM, and where Ntot is the
total number of photons detected by Alice. Alice com-
municates to Bob which mode contained no photons, and
Bob then applies the appropriate unitary transformation.
Here, with Hm being the empty mode, he applies

UB � exp

�
�2	iN̂NB�L�m�

M

�
(19)

to his state to obtain (unnormalized)

XM�1

q�0

exp

�
	i�q� L �m�2

M

�

� exp

�
�2	iqNtot

M

�
Qqj� exp��2	iq=M�iB:

(20)

This ensures that the coefficients Qq are in front of the
corresponding states j� exp��2	iq=M�iB. But what re-
mains to complete teleportation would be a phase shift
operation
j� exp��2	iq=M�i � exp

�
�	i�q2 � 2q�m� L� Ntot��

M

�
j� exp��2	iq=M�i: (21)

This operation is in general unitary only in the limit of large �=M. For finite �=M one is thus able to perform
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teleportation only approximately. Moreover, in that case
the probability to find nonzero numbers of photons in
every mode but one will be less than unity.

The measurement performed by Alice is, in fact, the
same as that needed for unambiguous state discrimina-
tion (USD) measurements on symmetric coherent states
[24]. The only difference is that the USD measurement
would have to be performed with a coherent state of
known phase, not with half of the entangled state, in
which the phase is basically unknown, that is, a mixture
of M values. This difference arises because for teleporta-
tion it is crucial that Alice’s measurement does not reveal
any information about the identity of the state to be
teleported. In both USD and probabilistic teleportation
the success probability may be less than unity (it becomes
unity only in the limit of large �=M), but one does know
when it failed.

In conclusion, we considered the entangling capa-
bilities of the unitary operator UA;B��� of Eq. (4),
which arises from a standard Kerr nonlinearity and
simple linear optics. Starting from coherent states,
M-dimensional symmetric generalizations of entangled
coherent states are generated for arbitrary integers M.
We constructed a teleportation protocol with these states
that uses only linear-optics and teleports states chosen
from an appropriate M-dimensional Hilbert space.

Moreover, we found that an arbitrarily large amount of
entanglement log2M ebits can be created in an arbitrarily
short time � � 	=M. This is surprising as in finite di-
mensions not only the entanglement is finite (obviously)
but also the rate of production of entanglement [7]. Thus
one cannot create any finite amount of entanglement in an
arbitrarily short time in a finite-dimensional space.

I thank Debbie Leung for pointing out this surprising
contrast between the present result and that of Ref. [7].
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