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Pseudogap in Doped Mott Insulators is the Near-Neighbor Analogue of the Mott Gap
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We show that the strong-coupling physics inherent to the insulating Mott state in 2D leads to a jump
in the chemical potential upon doping and the emergence of a pseudogap in the single-particle spectrum
below a characteristic temperature. The pseudogap arises because any singly occupied site not
immediately neighboring a hole experiences a maximum energy barrier for transport equal to t2=U,
t the nearest-neighbor hopping integral and U the on-site repulsion. The resultant pseudogap cannot
vanish before each lattice site, on average, has at least one hole as a near neighbor. The ubiquity of this
effect in all doped Mott insulators suggests that the pseudogap in the cuprates has a simple origin.
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leads to a charge gap at half-filling. Such local on-site for a strong-coupling analysis. To overcome the standard
In a Mott insulator with one orbital per site, each
unit cell contains an odd number of particles but the
Fermi energy lies in the middle of a gap. In contrast,
band insulators contain an even number of electrons per
unit cell and the Fermi energy lies atop a full band.
Consequently, Mott and band insulators are not adiabati-
cally connected. Nonetheless, most Mott insulators tend
to order antiferromagnetically below some temperature,
TN . As a consequence, it is standard to view the Mott state
simply as an antiferromagnet in which the unit cell has
doubled. On this view, the insulating properties of a Mott
insulator are equivalent to those of a band insulator. Band
insulators possess rigid bands, and hence doping creates
quasiparticles only at the Fermi level. That this picture
fails fundamentally in the parent cuprates, which are all
antiferromagnetic Mott insulators, is immediately evi-
dent from optical conductivity experiments [1,2] which
reveal that even for T � TN , a gap of order 2 eVexists and
doping leads to a massive reshuffling of spectral weight
from 2 eV to the Fermi energy. These experiments lay
plain that what is missing in the antiferromagnetic reduc-
tion is Mottness itself: (1) in the absence of magnetic
ordering (T > TN), a charge gap exists in the single-
particle spectrum, (2) each electronic state in the first
Brillouin zone has spectral weight both above and below
the charge gap, and (3) the sum rule that each single-
particle state carries unit weight is satisfied [3] only when
the spectral function is integrated across the charge gap
not simply up to the chemical potential as in a band
insulator. A consequence of (3) is that in the Mott state,
the traditional notion that the chemical potential demar-
cates the boundary between empty and occupied states
fails fundamentally. This failure is central to Mottness.

The breakdown of the traditional band insulator sum
rule in the cuprates is well described [3] by the Hubbard
model in which the on-site energy for double occupancy
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physics dominates the insulating behavior at half-filling.
In the lightly doped regime, � � 0, effective interactions
of longer range come into play as neighboring sites now
become correlated. If on-site correlation leads to a charge
gap at half-filling, it is certainly a possibility that nearest-
neighbor correlations for � � 0, for example, might lead
to a suppression of the density of states at the chemical
potential as well. In fact, it is well documented that all the
underdoped cuprates possess a pseudogap [4] in the
single-particle spectrum. However, the origin of this
phenomenon is unknown. As the pseudogap does not
appear to be a true T � 0 phase and the pseudogap line
joins continuously to the Mott insulator, proposals which
require broken symmetry [5–8] are difficult to reconcile
with the Mott state.

Without any assumption as to the nature of the ground
state, we show that the electron spectral function for the
2D Hubbard model contains a dip at the Fermi energy
which results in a pseudogap in the single-particle density
of states (DOS). The pseudogap remains pinned at the
Fermi level in the underdoped regime but moves above it
at an intermediate doping level, as is seen experimentally
[4]. The pseudogap is fundamentally tied to local corre-
lations on neighboring sites much the way the Mott gap
arises from on-site physics.

The starting point for our analysis is the Hubbard
model with nearest-neighbor hopping matrix element t
and on-site Coulomb repulsion U. We base our strong-
coupling analysis on a two-component composite
basis  with  1	�i� � �i	 and  2	�i� � �i	 and its
associated Green function S�i; j; t; t0� � hh i	; 

y
j	ii �

��t
 t0�hf i	�t�;  
y
j	�t

0�gi, where �i	 � ci	�1
 ni
	�
and �i	 � ci	ni
	. Here, ci	 � �i	 
 �i	 annihilates
an electron on-site i and ni is the number operator for
site i. The basis  exactly diagonalizes the on-site
interaction and hence serves as a natural starting point
2003 The American Physical Society 017002-1
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FIG. 1. Doping dependence of the chemical potential in the
2D Hubbard model computed using the local cluster approach
for T � 0:15t (dashed line) and T � 0:07t (solid line). The
inset on the left shows the imaginary part of the self-energy
evaluated at a Fermi momentum (0:3; 2:10) for n � 0:97,
(0:3; 1:84) for n � 0:8, and (0:3; 1:06) for n � 0:3, whereas
the inset on the right contains the density of states for n �
0:95 for U � 4t, U � 8t, and U � 12t.
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truncation problems inherent in the use of Hubbard oper-
ators, we adopt the following procedure. First, project [9]
all new operators that arise from the Heisenberg equations
of motion of the Hubbard operators onto the Hubbard
basis. Second, write the self-energy exactly in terms of
the remaining operators which are now orthogonal to the
Hubbard basis. Third, use local methods in the spirit of
dynamical mean-field theory (DMFT) [10] to calculate
the resultant electron self-energy. To go beyond the
single-site treatment indicative of dynamical mean-field
theories [10], we adopt the two-site expansion proposed
by Matsumoto and Mancini [11] in which the self-energy
is determined self-consistently from a two-site Hubbard
cluster embedded self-consistently in an interacting bath.
As all orientations of the two sites are considered, the
electron spectral function will be momentum dependent.
Self-consistent cluster methods which are exact as the
limit of an infinite cluster appear to be rapidly conver-
gent, providing accurate results for the thermodynamics
of the 1D and 2D half-filled bands [9] and, in fact,
constitute the accepted methodology [10] for treating
strongly correlated systems. Hence, an implementation
of the Hubbard operators coupled with DMFT-type tech-
nology places the limitations not on truncation in the
equations of motion but on the accuracy of the impurity
solver and the size of the finite cluster. As the complete
procedure is detailed elsewhere [9,12], we mention only
that in contrast to the work of Matsumoto and Mancini
[11], we required that for a fixed filling in the lattice, the
chemical potential of the cluster equal that of the lattice.

Using this procedure [9,12], we report first the doping
dependence of the chemical potential. Two distinct pos-
sibilities arise: (1) the chemical potential remains pinned
and midgap states are generated or (2) the chemical
potential jumps across the Mott gap. Our results shown
in Fig. 1 demonstrate that the chemical potential jumps
upon hole or electron doping, indicating an absence of
midgap states. The magnitude of the jump is set by the
Mott gap which is fully developed at T � 0. Even forU �
4t, the inset on the right shows that the chemical potential
resides in the lower Hubbard band (LHB) for n � 0:95.
While at some finite temperature, the chemical potential
may appear to evolve smoothly, �� � 0 as the doping
increases, and hence no midgap states are present. Exact
results in the 1D Hubbard model [13] as well as quantum
Monte Carlo simulations [14] in 2D also reveal a chemical
potential jump upon doping and hence no midgap states.
However, unlike 1D and 2D, in d � 1, the chemical
potential remains pinned [10] upon doping as midgap
states emerge. A chemical potential jump requires a large
imaginary part of the self-energy at the Fermi energy.
From the inset of Fig. 1, we find that Im� is initially large
in the underdoped regime and acquires the characteristic
!2 dependence in the overdoped regime indicative of
a Fermi liquid. Consequently, the method we use here
is capable of recovering Fermi liquid theory in the
017002-2
overdoped regime. Experimentally, whether �� vanishes
or not appears to be cuprate dependent. For example, in
La2
xSrxCuO4 (LSCO) [15], the chemical potential
remains pinned roughly at 0.4 eV above the top of
the LHB, while for Nd2
xCexCuO4 (NDCO) [16] and
Bi2Sr2Ca1
xRxCu2O8
y (BSCO) [17–20], the chemical
potential jumps upon doping and scales roughly as �2 as
obtained here. Because stripes require �� � 0, they have
been invoked [21] to explain the origin of the midgap
states in LSCO. The pseudogap in the underdoped cup-
rates has also been attributed [21] to stripes. However,
because �� � 0 for both NDCO and BSCO, a require-
ment for stripe formation, if the pseudogap has a univer-
sal origin in the cuprates, stripes are not its cause.

To address the origin of the pseudogap, we focus on the
doping dependence of the electron spectral function,

Im�S11 
 2S12 
 S22�=�, shown in Fig. 2. Six features
are evident: (1) the chemical potential moves farther into
the LHB as the filling decreases, (2) no coherent peaks
exist near the chemical potential for n � 0:97, (3) each
state in the first Brillouin zone (FBZ) has spectral weight
both above and below the chemical potential as dictated
by Mottness, (4) the Mott gap remains intact but moves to
higher energy as the doping increases, (5) at ��;��, the
upper Hubbard band (UHB) carries most of the spectral
weight regardless of the filling, and (6) a dip exists in the
spectral function at the chemical potential for n � 0:97
but is absent for n � 0:60. In the underdoped regime, the
characteristic width of each k state is of order t and even
much larger near ��; 0�. Such broad spectral features in
the underdoped regime are seen experimentally [18] and
017002-2
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FIG. 3. Density of single particle states for T � 0:25t and
T � 0:07t, U � 8t for the fillings shown. No pseudogap exists
at high temperature. At low T, a pseudogap emerges and
remains pinned at the Fermi level but moves above at an
intermediate doping level. In the overdoped regime, the
pseudogap vanishes entirely and a noninteracting system is
recovered.
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FIG. 2. Electron spectral function for U � 8t, T � 0:07t, and
n � 0:97 and 0:60 along a path in the first Brillouin zone from
top to bottom: �kx; ky� � �0; 0� ! ��;�� ! ��; 0� ! �0; 0�.
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arise in this context because Im� � 0 as shown in Fig. 1.
As a consequence, there is no sharp criterion for unit
occupancy of each state in the FBZ. Because the spectral
weight at each momentum is unity, however, and each
state lives both below and above the chemical potential,
the charge carried by the piece of the state lying below
the chemical potential is less than unity.

Is the dip in the spectral function shown in Fig. 2 for
n � 0:97 real? Displayed in Fig. 3 is the DOS for T �
0:25t and T � 0:07t for several fillings. As is evident, no
local minimum of DOS exists at the chemical potential at
high temperature, T � 0:25t. Features which emerge even
at high temperature are the reshuffling of spectral weight
from above the charge gap to below as the filling is
changed and also a movement of the Mott gap to higher
energies. Note that even at n � 0:30 the Mott gap is still
present, though almost all of the spectral weight now
resides in the LHB which closely resembles the noninter-
acting density of states. This is further evidence that we
correctly recover Fermi liquid theory as n! 0. At low
temperature, the lower panel of Fig. 3 demonstrates that a
pseudogap forms in the DOS for � � 0. The vertical line
at 0 indicates that the pseudogap occurs precisely at the
chemical potential. Similar qualitative results based on a
cluster method have been obtained by Maier et al. [22],
except their pseudogap is slightly displaced above EF. In
contrast, in the analysis of Haule et al. [23], the DOS has a
negative slope through EF (as dictated by the proximity
to the Mott gap) but never acquires a local minimum at EF
indicative of a true pseudogap. Because the pseudogap
exists below some characteristic temperature and van-
ishes at higher doping, the result obtained here is non-
trivial and highly reminiscent of experimental trends [4].
What is its origin? The inset of Fig. 1 indicates that for a
fixed filling, the pseudogap vanishes as U increases and
017002-3
scales as t2=U. This suggests that the pseudogap is tied to
short-range correlations and hence explains why it is
absent in d � 1 [10]. While Jeff / O�t2=U� corresponds
to the energy scale for antiferromagnetic spin fluctua-
tions, such fluctuations cannot inhibit hole transport. In
fact, Maier et al. [22] have shown that even if antiferro-
magnetism is killed, the pseudogap still persists. Further,
we have found that Jeff is only weakly doping dependent
for 0< x< 0:25 and, in fact, vanishes at x � 0:8. Hence,
the resolution of the pseudogap problem lies elsewhere.
The energy scale, t2=U also describes any transport pro-
cess in which the intermediate state is doubly occupied.
Such processes are captured by our approach as a result of
the coupling of the two-site cluster to the interacting bath.
Consider placing a single hole in a Mott insulator. Unlike
a site neighboring the hole, a singly occupied site two
017002-3
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FIG. 4. High (WH) and low (WL) spectral weight as a func-
tion of filling. WNI is the spectral weight in the noninteracting
system.
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lattice sites away must temporarily doubly occupy one of
its neighbors if it is to move to the hole. The energy for
this two-step process is t2=U. Sites farther away experi-
ence an energy barrier with a higher power of t2=U.
Hence, t2=U is the largest energy barrier for hole trans-
port once a Mott insulator is doped. Because some sites
experience no energy barrier, the single-particle density
of states exhibits only a suppression, a signal that hole
transport involves virtual excitations to the UHB. This
pseudogap cannot vanish before each site has on average
one hole as its immediate neighbor, roughly x � 0:25 for
a square lattice. Hence, the pseudogap is of the form
�t2=U�P�x�, where P�x� determines the probability that
hole transport involves double occupancy and, conse-
quently, is a steadily decreasing function of x.

Additionally, it is precisely two-step (or three-site)
hopping that makes the single-particle low-energy spec-
tral weight increase faster [3,24] than 2x. To show that we
recover this result, we compute the high and low spectral
weights by integrating the DOS from the energy which
minimizes the DOS to 1 ( 
1 for electron doping) and
from � to that fixed energy, respectively. The results
shown in Fig. 4 (which have been normalized per spin)
demonstrate that the initial spectral weight in the UHB
which is 1=2 at n � 1 all moves to low energies as the
filling decreases as is observed experimentally [1,2]. The
same is true for electron doping (n > 1). Further, the
curvature of the low-energy spectral weight (LESW) is
positive, indicating that the LESW grows faster [3,24]
than 2x. The growth in excess of 2x arises entirely from
virtual excitations between the LHB and UHB and points
to an inseparability of the low- and high-energy scales.
Such behavior is absent from a band insulator (see WNI in
017002-4
Fig. 4). That Mottness leads to such a drastic deviation
from the noninteracting result is a direct consequence of
each state having spectral weight both above and below
the chemical potential (see Fig. 2). Our finding that the
three-site terms lead to an inseparability of low- and
high-energy scales resonates with the recent work of
Kirkpatrick and Belitz [25] who have shown that three-
body terms are ubiquitous in strongly correlated electron
systems and lead to breakdown of a true low-energy
description.

Without global symmetry breaking, spin-charge sepa-
ration, or pairing, we have shown that lightly doped Mott
insulators possess a pseudogap which arises entirely from
local correlations. The pseudogap is ubiquitous because
any singly occupied site not immediately neighboring a
hole experiences an energy gap for transport equal to
t2=U. This generic phenomenon offers a simple resolution
of the pseudogap problem in the cuprates.
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