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Fermi Surface Topology and the Upper Critical Field in Two-Band Superconductors:
Application to MgB2
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Recent measurements of the anisotropy of the upper critical field Bc2 on MgB2 single crystals have
shown a puzzling strong temperature dependence. Here, we present a calculation of the upper critical
field based on a detailed modeling of band structure calculations that takes into account both the
unusual Fermi surface topology and the two gap nature of the superconducting order parameter. Our
results show that the strong temperature dependence of the Bc2 anisotropy can be understood as an
interplay of the dominating gap on the � band, which possesses a small c-axis component of the Fermi
velocity, with the induced superconductivity on the �-band possessing a large c-axis component of the
Fermi velocity. We provide analytic formulas for the anisotropy ratio at T � 0 and T � Tc and
quantitatively predict the distortion of the vortex lattice based on our calculations.
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strongly anisotropic single gap model, possessing a small
gap in c-axis direction and a big gap in ab-plane direction

function on that Fermi surface sheet and � is the
pairing interaction, which becomes a matrix in the band
Our understanding of the physical properties of the
recently discovered superconductivity in MgB2 has
made rapid progress since its discovery [1]. Its high criti-
cal temperature Tc � 39 K can be understood from strong
conventional electron-phonon coupling to a high fre-
quency phonon mode [2–4]. Its pairing symmetry seems
to be of conventional s-wave type [5,6]. However, in
contrast to conventional superconductors, a number of
recent experiments indicate that there exist two gaps of
different size in this compound [7–12]. This possibility is
supported by band structure calculations, which have
shown that the Fermi surface of this compound consists
of four bands: two �-type two-dimensional cylindrical
hole sheets and two �-type three-dimensional tubular
networks [13,14] in good agreement with recent de
Haas–van Alphen experiments [15]. Microscopic calcu-
lations of the superconducting gap based on band struc-
ture calculations have shown that indeed one should
expect a big superconducting gap living on the � bands
and a smaller one, induced by interband pairing interac-
tion, living on the � bands [3,16]. Impurity scattering,
which tends to average out strongly differing gap values,
in this case becomes ineffective, because the � and �
bands possess different symmetries, making interband
impurity scattering much weaker than intraband impu-
rity scattering [17]. Recent measurements of the upper
critical field Bc2, particularly its anisotropy, on single
crystal MgB2 have shown a puzzling strong temperature
dependence of the anisotropy ratio Babc2=B

c
c2 between the

ab plane and the c-axis upper critical field [18–20]. In
conventional systems this ratio rarely changes by more
than 10%–20% as a function of temperature. In MgB2

changes by more than a factor of 2 have been observed. It
has been shown that such a strong temperature depen-
dence of the anisotropy ratio can be obtained within a
0031-9007=03=91(1)=017001(4)$20.00 
[21]. However, the gap anisotropy would have to be
a factor of 10, which is too big as compared with ex-
perimental values. In addition, this scenario would
be inconsistent with penetration depth studies which
clearly indicate the presence of a small gap within the
ab plane [22,23].

Here, we present first calculations of the upper critical
field Bc2, which take into account the multiband Fermi
surface structure seriously. We show that the strong tem-
perature dependence of the anisotropy of Bc2 can be
traced back to the influence of the two topologically
very different Fermi surfaces. While the cylindrical
Fermi surface sheets are dominating the behavior of Bc2
at low temperatures, leading to a large anisotropy, at
temperatures approaching Tc the � bands due to their
much larger c-axis Fermi velocity play a more important
role, strongly reducing the anisotropy. Thus, the strong
temperature dependence of the Bc2 anisotropy appears as
a crossover from a low temperature � band dominated
regime to a higher temperature mixed � and � band
regime.

In order to include the multiband Fermi surface struc-
ture in the calculation of the upper critical field, we
start our investigation from the fully momentum depen-
dent multiband formulation of the quasiclassical (Eilen-
berger) theory of the upper critical field [24]. For that
purpose we have to solve the linearized multiband gap
equation in the presence of an external magnetic field,
which reads

	
�~rr� � ��T
X

0

X
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0
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0 � ~rr; k̂k0;!0

n�i
0 : (1)

Here, f
 is the anomalous Eilenberger propagator on
the Fermi surface sheet denoted by 
. 	
 is the gap
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FIG. 1 (color). Fermi surface topology used for the calcula-
tion of Bc2 in this work. The � band is modeled by a half-torus,
the � band by a distorted cylinder.
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indices. The brackets h	 	 	i
0 denote a Fermi surface aver-
age over momentum k̂k0 of the Fermi surface sheet 
0. In
Eq. (1) we have already assumed that the gaps are iso-
tropic s wave on the Fermi surfaces, as indicated by
experiment, but may have different values on different
sheets. At Bc2 the anomalous Eilenberger propagator has
to be determined from the linearized Eilenberger equa-
tion (for !n > 0)�

!n 
 ~vvF;


�
�h
2
~rr� i

e
c
~AA�~rr�

��
f
� ~rr; k̂k;!n� � �	
�~rr�:

(2)

Here, ~vvF;
 is the (momentum dependent) Fermi velocity
on Fermi surface sheet 
 and ~AA the vector potential due to
the magnetic field ~BB � ~rr� ~AA. Equations (1) and (2)
constitute an eigenvalue problem for 	
� ~rr�. For a given
temperature T the solution 	
� ~rr� which solves Eqs. (1)
and (2) for the highest value of B determines Bc2.

Usually this eigenvalue problem is solved by a Landau
level expansion of 	
� ~rr� above the Abrikosov ground
state of the vortex lattice. It has been shown recently,
however, that a variational ansatz for 	
� ~rr� correspond-
ing to a distorted Abrikosov lattice leads to much better
results for strongly anisotropic systems [21], and we will
adopt that method here. In this method the ansatz reads
	
� ~rr� � 	
 ��~rr� with  ��x; y� �  �e��x; e�y�. Here,
  is the usual Abrikosov ground state and � is a varia-
tional parameter describing the distortion of the vortex
lattice. The undistorted lattice corresponds to � � 0 and �
has to be determined by maximizing Bc2. Introducing
this ansatz into Eqs. (1) and (2) and using standard
operator techniques (see, e.g., Refs. [24–27]) we are led
to the following eigenvalue problem for 	
 in band space:
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Here, �
 is the highest eigenvalue of �


0
, which deter-

mines Tc. The function l
 is given by the expression

l
 �
Z 1

0

du
sinhu

h1� e�u
2�eBc2=8�2T2��e�2�v2F1;
�k̂k�
e

2�v2F2;
�k̂k��i
:

(4)

Here, vF1;
 and vF2;
 are the components of the Fermi
velocity perpendicular to the magnetic field ~BB on Fermi
surface 
. According to Eq. (3) the criterion for Bc2 is
that the highest eigenvalue of the matrix �



0
� 1
�


� ln TTc �

l
0 ��; Bc2T2 �� becomes 1. Apparently, at T � Tc this is ful-
filled for Bc2 � 0, because l
 ! 0.

Equations (3) and (4) allow one to determine the tem-
perature dependence and angular dependence of Bc2 from
microscopic grounds. The material parameters we need
for the solution are the Fermi velocities ~vvF;
�k̂k� and the
coupling matrix �



0
, which can be taken from band

structure calculations. In order to simplify the analysis
we restrict ourselves to two relevant bands, because the
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two� bands and the two� bands are very similar [3]. The
� band can be described to a good approximation by a
cylindrical Fermi surface with a small c-axis hopping
parameter. The � band can be modeled by a half-torus
as shown in Fig. 1 (for comparison see the �-point cen-
tered Fermi surfaces in Ref. [13]). Fermi velocities are
thus ~vvF;��#;$� � vF��cos# cos$; cos# sin$; sin#� and
~vvF;��kc;$� � vF��cos$; sin$; %c sinckc�. Here, $ is the
azimuthal angle within the ab plane, # 2 ��2 ;

3�
2 � the

polar angle of the torus, kc the c-axis component of
the momentum, and c the lattice constant in the c direc-
tion. The dimensionless parameter %c describes the small
c-axis dispersion of the cylinder. The Fermi surface aver-
ages over the cylinder and the torus are then given
by h	 	 	i� � c

4�2

R�=c
��=c dkc

R
2�
0 d$ 	 	 	 and h	 	 	i� �

1
2�2

R3�=2
�=2 d#

R
2�
0 d$ 1
& cos#

1�2&=� 	 	 	 , where & is the ratio of
the two radii of the torus. The parameters of the Fermi
velocities can be found from band structure calculations.
Taking the values given in Ref. [28], we determine vF� �
8:2� 105 m=s, vF� � 4:4� 105 m=s, and %c � 0:23.
The ratio of the two radii of the torus can be estimated
from the Fermi surface crossings in Ref. [14] to be about
& � 0:25.

For a 2� 2 matrix �


0

the criterion that the biggest
eigenvalue of Eq. (3) becomes 1 leads to the equation �1�
'�l� 
 'l� 
 lnt � ���l� 
 lnt��l� 
 lnt�. Here, t �
T=Tc, �� is the smaller eigenvalue of �



0
, and ' �

������
�
���

is a dimensionless parameter describing the inter-
band coupling strength of the two bands (' � 0 corre-
sponds to no coupling, ' � 0:5 to maximum coupling).
From band structure calculations in Ref. [3] the following
effective matrix elements can be obtained: ��� � 0:959,
��� � 0:222, ��� � 0:163, and ��� � 0:278. From these
we find �
 � 1:008, �� � 0:228, and ' � 0:064. As it
017001-2
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turns out the remaining parameter � � �
��
�
���

only
weakly affects the results as soon as �� is sufficiently
smaller than �
, as is the case here.

We have calculated Bc2 numerically for the material
parameters above, optimizing the parameter � such that
Bc2 is maximized. In Fig. 2 we show our result for the
anisotropy ratio � � Babc2=B

c
c2 as a function of tempera-

ture for different values of the interband coupling
strength '. For ' � 0, when there is no coupling between
the two bands, the temperature dependence of � is deter-
mined by the cylindrical � band because of its stronger
pairing interaction. Here, � changes only by 20%, as one
expects for an isotropic single gap superconductor. When
' is increased, however, the temperature dependence of �
becomes more pronounced. Our result for the parameters
given above is shown as the dashed line. Note that our
calculation is parameter-free, relying only on the pa-
rameters given by band structure calculations. For com-
parison, also the experimental data by Lyard et al. [20]
are shown (solid circles). As will become clear below, the
most important parameters determining the temperature
dependence of � are the interband coupling strength '
and the c-axis dispersion parameter %c. If we allow these
two parameters to vary somewhat, we can obtain an
excellent fit of the experimental data. The dotted line
shows our result for ' � 0:121 and %c � 0:182, where
the other parameters have been kept constant.We mention
here that this set of parameters also gives a correspond-
ingly good fit of the temperature dependences of Bcc2 and
Babc2 , separately including the upward curvature of Babc2
that has been noted in the experiments [29]. This is just an
immediate consequence of the strong temperature depen-
dence of the anisotropy ratio and Bcc2 varying linearly
near Tc because of an absence of vortex lattice distortion
in this field direction.
FIG. 2. Temperature dependence of the anisotropy ratio � �
Babc2=B

c
c2 for the two-band model described in the text and

different interband coupling strengths '. Solid circles are
experimental results taken from Lyard et al. [20].
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Apparently, the anisotropy ratio � turns out to be more
sensitive to interband coupling ' close to Tc than at
T � 0. In order to get a better physical understanding
for this behavior, we want to discuss some limits, in
which analytical solutions for Bc2 can be obtained. At
first we consider the limit T ! Tc. In this case Eqs. (3)
and (4) can be solved exactly, and we obtain for the
angular dependence of Bc2 as a function of the angle )
the magnetic field makes with the c axis:

Bc2�)�
Bc2�) � 0�

� �cos2)
 Asin2)��1=2; (5)

where A � 2
�1�'�hv2c;�i�
'hv2c;�i�
�1�'�hv2ab;�i�
'hv

2
ab;�i�

. Here, hv2c;
i
 is the

average of the squared c-axis component of the Fermi
velocity over Fermi surface 
, while hv2ab;
i
 is the cor-
responding in-plane quantity. The distortion parameter �
is given by e�2� � Bc2�)�

Bc2�)�0� . When we introduce the nu-
merical values for vF�, vF�, and & given above, we find
for the anisotropy ratio

Babc2
Bcc2
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1
 0:63'

1
 '�3:69%2c � 1�

vuut : (6)

For %c � 0:23 this result is shown in Fig. 3 as a function
of ' (solid line). From Eq. (6) we see that at ' � 0 the
anisotropy is given by the c-axis dispersion of the cylin-
drical Fermi surface and actually diverges for %c ! 0.
(Note that this divergence could not have been obtained
from a Landau level expansion above the Abrikosov
ground state and our variational ansatz above is crucial
for this result). Once the interband coupling ' is in-
creased, the anisotropy quickly reduces. This reduction
becomes sizable already, when '�

hv2c;�i�
hv2c;�i�

� %2c
3:69 . Thus, it
FIG. 3. Anisotropy ratio � � Babc2=B
c
c2 as a function of inter-

band coupling strength ' for T � 0 (dashed line) and T � Tc
(solid line). The dotted line shows the approximation for T � 0
given in Eq. (7). At Tc the anisotropy ratio is much more
sensitive to small interband coupling strengths '.
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FIG. 4 (color). Vortex lattice structure for magnetic field in
c-axis direction (left panel) and in ab-plane direction (right
panel) at zero temperature near Bc2 calculated from the two-
band model described in the text. For comparison, the area of
the unit cell has been kept fixed.
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is the small c-axis Fermi velocity of the cylindrical Fermi
surface as compared to the one of the � band which leads
to a high sensitivity of � near Tc, and a small interband
coupling is already sufficient to make the influence of the
� band visible. In the limit T ! 0 the integration in
Eq. (4) can be performed, and we find l
��;

Bc2
T2 � �

1
2 ln�

*eBc2
2�2T2� 


1
2 hln�e

�2�v2F1;
 
 e2�v2F2;
�i
 where ln* �

0:577. Since the pairing interaction is dominant in the
� band, we can employ two approximations: at first we set
�� � 0. This corresponds to assuming that superconduc-
tivity in the � band is completely induced by interband
coupling. As a second approximation we assume that the
vortex lattice distortion � is also dominated by the �
band. Then we can find � by just optimizing it at ' � 0
and then use it for evaluation at ' > 0. With these two
approximations the logarithmic averages in l
 can be
performed and we finally get

Babc2 �T � 0�

Bcc2�T � 0�
�

1:246
%c

e�'�0:482�2 ln%c�: (7)

The parameter � is found to be � � 1
2 ln%c, which shows

that at low temperatures there is no simple relation any-
more between � and the anisotropy ratio. Also we mention
here that at low temperatures Eq. (5) does not hold any-
more. In Fig. 3 Eq. (7) is shown for %c � 0:23 as the
dotted line. In order to demonstrate the quality of these
approximations also the fully numerical result without
these approximations is shown as the dashed line.
Apparently, now the anisotropy � is much less sensitive
to interband coupling and varies only on a scale given by
'� 1=�0:482� 2 ln%c�, since %c now comes in only log-
arithmically. Equation (7) shows that at T � 0 the diver-
gence for %c ! 0 appears at all '< 0:5, while at T � Tc
this divergence shows up only at ' � 0. Numerically we
observe that at finite ' and %c � 0 there is a certain
temperature at which Babc2 diverges. This temperature be-
comes smaller when ' is increased. In Fig. 4 we show the
distortion of the vortex lattice at high magnetic field and
017001-4
low temperature that we expect from our calculation.
When the magnetic field is directed along the c axis of
the crystal a regular Abrikosov lattice is expected as
shown in Fig. 4 (left panel). However, when the field is
directed within the ab plane we expect a distortion of
e� �







%c

p
� 0:48 as shown in Fig. 4 (right panel). This

prediction can be checked by neutron scattering or STM
tunneling [30].

To summarize, we have calculated the anisotropy of
the upper critical field for the two band Fermi surface
topology shown in Fig. 1. Using parameters from band
structure calculations for MgB2 we find a strong tempera-
ture dependence of the upper critical field in agreement
with recent measurements on MgB2 single crystals. Fine
tuning of the parameters can yield a very good fit of the
experimental data. We observe that the small c-axis dis-
persion of the �-band leads to a high sensitivity of the
anisotropy ratio on the interband coupling strength near
Tc, but not at T � 0. This suggests that the interplay of
these two quantities leads to the strong temperature de-
pendence of the upper critical field in MgB2.
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