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Entropic Phase Separation in Polymer-Microemulsion Networks
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We study theoretically a model system of a transient network of microemulsion droplets connected by
telechelic polymers and explain recent experimental findings. Despite the absence of any specific
interactions between either the droplets or polymer chains, we predict that as the number of polymers
per drop is increased, the system undergoes a first-order phase separation into a dense, highly connected
phase, in equilibrium with dilute droplets, decorated by polymer loops. The phase transition is purely
entropic and is driven by the interplay between the translational entropy of the drops and the
configurational entropy of the polymer connections between them. Because it is dominated by entropic
effects, the phase behavior of the system is extremely robust and is independent of the detailed
properties of either polymers or drops.
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FIG. 1. (a) Experimentally observed phase behavior of the
connected microemulsion as a function of the bead density c
within the droplets, and the number of dangling ends out-
side the droplets is statistically insignificant. Neverthe-
less, the polymer ends can detach from a droplet and

and the mean number of stickers per droplet, r. (b) Description
of the connected microemulsion. The telechelic polymers can
either link two oil droplets or loop on a single one.
Introduction.—Equilibrium or transient gels are
network-forming systems, examples of which include
surfactant solutions, gels of biological molecules, or syn-
thetic polymers [1–10]. Understanding the phase behavior
and structure of such systems is an active field of research
[11–18], and has a wide range of practical applications
[1,2,8]. A particularly elegant experimental realization
of a transient network has been reported in [19]. The
system consists of oil-in-water microemulsion droplets
(which we call either drops or beads) connected by tele-
chelic polymers [see Fig. 1(b)]; the latter have a hydro-
philic backbone with a hydrophobic group at each chain
end. Mixtures of telechelic polymers and emulsions have
a wide range of technological applications, including
paints, cosmetics, and enhanced oil recovery. Precision
control of the structural and rheological properties of
materials is essential for achieving good performance.
Such control is currently achieved using the telechelic
additives, that form a transient network with controlled
rheological and structural properties [19]. Apart from its
high applicative interest, the telechelic-microemulsion
mixtures serve as a model system for a general class of
transient networks. The advantage of this particular
system is that the parameters that control the thermody-
namics and structure can be easily identified and inde-
pendently controlled: the concentration of possible nodes
(the droplets) and the connectivity of the network (the
number of polymers per droplet). This is in contrast, for
example, with binary mixtures of telechelics, where one
cannot separately control the number of nodes, formed by
the associating chain ends.

Because of the high hydrophobic energy of the stickers
(� 10–20kBT ), the chain ends are constrained to lie
0031-9007=03=91(1)=015901(4)$20.00 
switch between loop (with both ends inside the same
droplet) and bridge (with the chain ends residing in
different droplets) configurations when the droplets are
close enough. Polymer ends can also be exchanged be-
tween the droplets during droplet collisions. Rheological
experiments show that the stress relaxation times, which
are related to the time scale for chain rearrangement
between the droplets, are of the order of 1 s [19]. Thus,
the time scales of the observation (days) are much larger
than the time for the polymers to explore different con-
nectivity configurations, and the system can be consid-
ered to be in equilibrium. Although the system is
athermal, it has been found [19] that for high polymer
to bead ratios, the system undergoes a first-order phase
separation. Independently, a nonthermodynamic, struc-
tural transition was observed, where an infinite con-
nected network is formed, as reflected in rheological
2003 The American Physical Society 015901-1
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measurements. The experimentally observed phase dia-
gram is shown in Fig. 1(a).

In this Letter, we investigate theoretically the phase
behavior and structure of this experimental system. We
predict that as the average number of polymers per bead is
increased, the system undergoes a first-order phase sepa-
ration into a highly connected dense network that coex-
ists with a dilute phase of disconnected beads, decorated
with polymer loops. This explains the experimental re-
sults of Ref. [19] and predicts how the polymer properties
control the phase behavior. The predicted phase separa-
tion has a purely entropic origin; there are no energetic
interactions among the polymers or droplets. The phase
separation occurs because the loss of the translational
entropy of the droplets is overcompensated by the high
configurational entropy of the polymer connections in
the dense network. The analytical results are confirmed
by Monte Carlo simulations that also predict the phase
separation.

Analytical model.—We first discuss the thermody-
namic behavior of the system. A total of N beads and
Np polymers are distributed in space so that a polymer
either connects two beads or loops on a single bead.
The total free energy of the system, which in this ather-
mal system amounts to the configurational entropy, in-
cludes two contributions. The first is the translational
entropy of the beads which we take as the lattice-gas
entropy of mixing of a dispersion of hard spheres, S0�c� �
��c lnc� �1� c� ln�1� c�� , where c is the volume frac-
tion of the beads and S0�c� is the entropy per site on the
lattice. The second contribution is the configurational
entropy of distributing the polymers among the beads.
A polymer can either loop onto a single bead or bridge
between two droplets. For a single polymer, there are qlN
available looped states, where N is the number of the
drops in the system and ql is the number of positions
available to a sticker of size a at the surface of a drop:
ql ’ 4�R2

0=��a
2�. A bridging polymer connecting two

drops at a distance R, is stretched to a length R, with an
entropic cost (in units of kBT and assuming ideal chains,
for simplicity) ER ’ 3

2R
2=R2

G where RG is the polymer
radius of gyration. From simple geometric considerations,
the average number of droplet pairs separated by a dis-
tance R is 1

2 cN�4�R
2=R2

0�g�R� 
 qR cN where R0 is the
radius of a drop and g�R� is the normalized density-
density correlation function of the drops. As a first step,
in the mean field approximation we take g�R� � 1 for
R > R0. As we show later, the average number of looped
polymers per bead is small. Thus, because there is no
restriction on the number of polymers connecting two
given drops (except at very high polymer concentrations,
outside the range of the experiments), the polymers are
independent. The partition function of a single polymer is
Z1 � qlNe�� � cN

P
RqR e

�ER=T where � is a free energy
cost (in units of kBT) of a looped polymer, that measures
the entropic cost of both ends being confined to the same
droplet. Taking into account the indistinguishability of
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the polymers, the configurational partition function of the
total Np polymers, that determines the polymer distribu-
tion among the beads is thus

Zp �
1

Np!
Z
Np
1 �

�qcN � qle
��N�Np

Np!
; (1)

where q 

R
dR�4�R2=�R2

0� e
�ER=T , is the effective

number of droplet pairs. It is determined by the balance
of the Boltzmann factor for the stretching energy, that
strongly decreases with distance, and the number of
available positions, 4�R2=�R2

0 that increases with dis-
tance R.

In the thermodynamic limit, where the number of
drops, polymers, and the number of lattice sites, V, all
become infinite, the free energy per site (in units of kBT),
f 
 � 1

V lnZp � S0�c� is

f � c lnc� �1� c� ln�1� c� ���ln�� 1�

�� ln�qc2 � cqle���; (2)

where c � N=V and � � Np=V are the densities of the
droplets and of the chains, respectively. The first two
terms account for the translational entropy of the droplets
and the third term is the translational entropy of the
polymer chains (the excluded volume of the polymers is
neglected at this stage). The last term is the effective,
entropically induced attraction between the polymers and
droplets; this term causes the free energy to decrease
when the concentration of the beads or polymers/beads
ratio is increased. We stress that there are no specific
interactions between the droplets and/or the polymers,
and the resulting thermodynamic attraction is of purely
entropic origin. The system is thermodynamically stable
if the free energy f��; c� [Eq. (2) is a convex function of
both � and c. Formally, this means that the second
variation of the free energy, �2F � F����

2 � Fcc�c
2 �

2Fc����c is positive so that the stability matrix

ŜS 


"
F�� Fc�
F�c Fcc

#

is positive definite, i.e., possessing two positive eigenval-
ues. Because F�� � 1

� is always positive, it is sufficient
for the determinant Det ŜS to be positive, in order to
guarantee convexity. Using Eq. (2) for f��; c�, one finds
Det ŜS � �2=�c�c� ql

q e
����� 1=��c�1� c�� and the sys-

tem is thermodynamically stable only if

2�=c <
c� ql

q e
��

c�1� c�
; (3)

where 2�=c 
 r is the average number of stickers (poly-
mer chain ends) per droplet. This stability condition de-
fines the spinodal line in the �c; r� plane as shown in Fig. 2.
Note that because the destabilizing effect comes from the
cross terms, Fc�, the tie lines are not horizontal, but
connect points with different values of r.
015901-2
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FIG. 2. Phase diagram of drops connected with polymers.
The thick line is the spinodal line of the phase separation for
qle

��=q � 2. Above this line the system becomes thermody-
namically unstable. The critical point is at c � 0:5 and is
shown as a black dot. Note that the critical point is not at the
minimum of the spinodal. The tie lines are shown as dotted
lines in the phase separation region. Note that they are not
horizontal. The dashed line shows the percolation threshold
calculated for an fcc lattice with q � 16. Below the percolation
line, the system is in the fluid state, while above it a connected
gel is formed.
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If r > �c� ql
q e

���=�c�1� c��, the system is thermody-
namically unstable and phase separates into a system of
dense droplets that are highly connected by polymers,
that coexists with a dilute system of almost disconnected
droplets, decorated with polymer loops. The latter obser-
vation stems from the fact that the average fraction of the
looped polymers ��� is given by

��� � �
@ ln�Z1�
@�

�

ql
q e

��

ql
q e

�� � c
; (4)

as follows from from Eq. (1). Thus, the fraction of looped
polymers ��� tends to unity in the dilute phase, where c�
ql
q e

��. From the equality of the polymer chemical po-
tential,  � � ln��=�qc2 � qle��c�� in the coexisting
phases, it follows that the phases that coexist lie along
the lines r � m�c� ql

q e
��� in the �c; r� plane; wherem is a

constant determined by  �, m � e �=q. For any given
m > 4, this line intersects the spinodal [Eq. (3)] at two
points, as shown in Fig. 2. For m � 4 there is only one
solution � 12 ; 2�1�

ql
2q e

���� and the tie line is tangent to the
spinodal; this determines the location of the critical point
which is in our mean field model is given by c � 0:5
independent of the value of the control parameter qlq e

��,
and the critical polymer to bead ratio, rc � 2�1� ql

2q e
���.

For m< 4 there is no phase coexistence.
We now estimate the parameter � that reflects the

reduction in the entropy of a polymer due to the constraint
that both ends reside in the same droplet. In a simple
approximation, the number of configurations available to
a polymer with radius RG, with both ends constrained to
a volume v, that is small relative to the total volume
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available, is proportional to �v=R3
G� ’ �R2

0l=R
3
G� where l

is the length of the hydrophobic sticker. Therefore e�� ’
�R2

0l=R
3
G� for R0 <RG and saturates to unity for R0 > RG.

The parameters ql, q and � (which is entropic in origin),
combine to yield the single control parameter of the
system: qle��=q. Using typical values of the droplet
radius, polymer radius of gyration and the size of the
hydrophobic stickers from Ref. [19], we estimate the
control parameter qle��=q� 2–3.

It is important to realize that the predicted phase
separation cannot be attributed to the direct attraction
between the beads induced by the connecting poly-
mers; the total polymer stretching energy site is E ’
1
2��

R
ERe�ER=TqR dR=

R
e�ER=TqR dR� and is irrelevant

for the phase separation because it is linear in polymer
density �.

Because of its entropic nature, the phase separation is
extremely robust and is independent of the detailed as-
sumptions about the polymer properties. It persists even
in the limit of very short and rigid chains, that connect
only nearest neighbor drops, complementary to the case
of flexible chains discussed above. Neglecting the single
bead loops (which can be shown to be unimportant in
this limit), the total number of ways to distribute Np
indistinguishable polymers among P 
 1

2 qcN nearest
neighbor pairs is �Np � P� 1�!=�Np!�P� 1�!� [20] and
the total free energy per unit volume is f ’�S0�c��
1
2qc

2�ln�12qc
2�� 1�� 1

2qc
2 ln� when r�2�=c�1. This

free energy also exhibits a phase separation between a
dense, highly connected phase in equilibrium with a
dilute solution of beads.

The mean field picture can be improved by using an
exact mapping of the droplet-polymer system to a lattice-
gas model. Denoting the chemical potential of the beads
as b and that of the polymers as p, the grand-canonical
partition function of the polymer-microemulsion system
(with no loops) can be written as

 �
X
N;P

��N;P�
X1
Np�0

�Np � P� 1�!

Np!�P� 1�!
e bN� pNp

�
X
N;P

��N;P�e bN�1� e p��P; (5)

here ��N;P� is the number of ways to arrange N drops
so that P nearest neighbor pairs of drops exist in a given
realization of the grand-canonical ensemble (P is equal
to 1

2 cN only in the mean field approximation). Equation
(5) exactly corresponds to the grand-canonical parti-
tion function of a lattice gas with a Hamiltonian H �
ln�1� e p�

P
hi;ji)i)j � b

P
i)i. Thus, the polymer

chemical potential  p, related to the number of the
polymers in the system, plays the role of the interaction
parameter that controls the phase separation. Note that
this mapping can be extended off-lattice using similar,
although more complicated, arguments.

Percolation.—The transition from a fluidlike state to
an elastic gel is related to the formation of an infinite
015901-3
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network of droplets connected by polymers. It is
described by site-bond percolation models that have
been applied to study gelation [14]. The vertices of a
lattice are occupied with probability ps, and a bond can
form between two, occupied, nearest neighbors with
probability pb. Percolation is said to occur when an
infinite cluster of occupied sites, connected by the bonds,
is formed. In our system, the site-occupation probability
ps can be identified with the droplet concentration, c. The
‘‘bond occupation’’ probability can be identified as the
probability that at least one polymer connects a given pair
of beads. For a given numbers of chain ends per droplet, r,
the average number of bonding polymers per available
nearest neighbor pair of drops is rb � r�1� ����=�qc�
where ��� is the average fraction of looped polymers,
Eq. (4). To a good approximation, the probability pn
that a given pair of nearest neighbor droplets is connected
by n polymers, obeys the Poisson distribution, pn �
�rnb=n!�e

�rb . Thus, bond probability is pb �
P

1
n�1 pn �

1� e�rb . Previous studies of percolation have shown [21]
that the percolation line in the �pb; ps� plane follows a
power law pb � �ps�,pcb where , � � lnpcb= lnp

c
s and pcb

and pcs are the percolation thresholds for independently
calculated bond and site percolation on the given lattice.
Although lattice models for percolation cannot be applied
in a quantitative manner to the continuum, polymer-
droplet system they provide a qualitative indication of
the gelation transition as shown in Fig. 2.

Simulations.—To independently verify the predictions
of the analytical model, we have performed the Monte
Carlo simulations in the grand-canonical ensemble of
both beads and polymers, with chemical potentials  b
and  p, respectively. The simulated phase behavior also
exhibits a first-order transition between a dense con-
nected network and a dilute phase. The detailed results
of the simulations will be presented elsewhere [22].

The predicted phase diagram, summarized in Fig. 2,
reproduces the experimentally observed phase behavior
of the model transient network of Ref. [19], shown in
Fig. 1(a). The spatial phase separation described in this
Letter originates from a purely entropic effect, observed
in other physical systems as well [23,24]. Namely, the
loss of entropy due to spatial inhomogeneity and for-
mation of the dense phase, is overcompensated by the
increase in the polymer configurations. Because of sim-
plicity of the experimental realization which allows for
easy control over the system parameters, the described
system can be extended to cover a wide range of equilib-
rium and nonequilibrium networks, in particular, to ex-
amine the role of entropic effects in the formation of
spatially inhomogeneous structures in nonequilibrium
networks [25,26].
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