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Hardness of Covalent Crystals
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Based on the idea that the hardness of covalent crystal is intrinsic and equivalent to the sum of the
resistance to the indenter of each bond per unit area, a semiempirical method for the evaluation of
hardness of multicomponent crystals is presented. Applied to �-BC2N crystal, the predicted value of
hardness is in good agreement with the experimental value. It is found that bond density or electronic
density, bond length, and degree of covalent bonding are three determinative factors for the hardness of
a polar covalent crystal. Our method offers the advantage of applicability to a broad class of materials
and initializes a link between macroscopic property and electronic structure from first principles
calculation.
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Superhard materials are of primary importance in
modern science and technology. Intense theoretical and
experimental efforts have been focused on the possibility
of finding new low compressibility materials with hard-
ness comparable to diamond. In order to design the new
superhard materials, clarifying the meaning of hardness
is of utmost importance [1–3]. Over the last two decades,
material scientists have aimed at finding materials
with high values of bulk modulus E and shear modulus
G [4–7]. In fact, bulk modulus measures resistance to
volume change, which has little direct connection with
hardness, as is well known from dislocation theory [8]. A
better correlation has been observed between hardness
and G, although, in this case too, the dependence is not
unequivocal and monotonic. For example, the bulk and
shear moduli of tungsten carbide which are as high as 439
and 282 GPa, respectively, are among the highest as
known, but its hardness is only 30 GPa [1]. This implies
that it is difficult to describe hardness quantitatively only
by macroscopic physical properties of E and G.

In simple metals and ionic substances, the bonding is
delocalized, and hardness is determined by extrinsic
factors such as impurities, precipitates, grain boundaries,
and the like. However, in covalent substances, the bond-
ing is localized in electron spin pairs, thus hardness is
intrinsic. Gilman’s theory indicates that chemical hard-
ness and mechanical hardness have the same reaction
barrier, which is the difference between energy of the
lowest unoccupied electronic orbital and the highest oc-
cupied orbital [7]. Recently, Jhi et al. have investigated
the correlation between valence electron concentration
and hardness [9]. Their work has given a clue that hard-
ness could be understood in terms of their electronic band
structure. In our opinion, the hardness of covalent crys-
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each bond per unit area to indenter. This resistant force of
bond can be characterized by energy gap, and the number
of bond per unit area is determined by valence electron
density. Based on this assumption, we represent a semi-
empirical method for the evaluation of hardness in co-
valent crystals.

Hardness was defined as the resistance offered by a
given material to external mechanical action. Vickers and
Knoop scales are frequently used. In static indentation
tests, pyramid is forced into a surface and the load per
unit area of impression is taken as the measure of hard-
ness. Therefore, it is not surprising that the resistant force
per unit area could play a key role in determining hard-
ness of materials.

Generally speaking, hardness depends strongly on
plastic deformation, which is related to the creation and
motion of dislocations [1]. In a covalent crystal, bonding
is highly stereospecific and dislocation energy depends
strongly on its position. Regardless of details, a basic fact
remains that, in order to plastically shear such a crystal,
electron-pair bonds must first be broken and then remade,
resulting in two unpaired electrons when an atomic shear
process is half completed. Energetically breaking an elec-
tron-pair bond inside a crystal means that two electrons
become excited from the valence band to the conduction
band so the activation energy required for plastic glide is
twice the band gap, Eg [10]. Thus, the resistant force of
bond can be evaluated by energy gap Eg and the hardness
of overly covalent crystals should have a following form:

H�GPa� � ANaEg; (1)

where Na is the covalent bond number per unit area and A
is a proportional coefficient. For a crystal with cell vol-
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Na �

�X
i

niZi=2V
�
2=3

� �Ne=2�
2=3; (2)

where ni is the number of i atom in the cell, Zi is the
valence electron number of i atom. Ne is the electron
density expressed in number of valence electrons per
cubic angstroms.

Equation (1) is suitable only for pure covalent crystals.
For polar covalent crystals, besides the covalent compo-
nent, a partial ionic component has to be considered. The
average energy gap Eg for a binary polar covalent ABm
type crystal can be separated into both of covalent or
homopolar gap Eh and ionic or heteropolar gap C by
Phillips [11]

E2g � E2h � C2; (3)

where C represents the ionic or charge-transfer contribu-
tion, Eh represents the pure covalent contribution, and is
TABLE I. Hardness and parameters related to
and polar covalent crystals, where Hv calc and Hv
hardness, respectively. Since there are no Hv m
below, experimental Knoop hardness Hk has bee

d Eh Eg

Crystals Na ( �A) (eV) (eV)

Diamond 0.499 1.554 13.2 13.2
Si 0.215 2.351 4.7 4.7
Ge 0.198 2.449 � � � � � �

BP 0.308 1.966 7.3 7.4
c-BN 0.486 1.568 12.9 15.0
�-Si3N4 0.363 1.734 10.0 13.0
AlN 0.332 1.901 8.0 10.7
GaN 0.315 1.946 7.5 10.6
InN 0.256 2.160 5.8 8.9
�-SiC 0.334 1.887 8.1 9.0
WC 0.386 2.197 5.5 6.0
Stishovite 0.490 1.770 9.5 14.5
Al2O3 0.461 1.900 8.0 17.7
RuO2 0.495 1.990 7.1 12.7
SnO2 0.399 2.010 6.9 14.8
BeO 0.163 1.648 10.8 17.1
ZrO2 0.396 2.200 5.5 15.4
�-SiO2 0.356 1.609 12.1 18.5
HfO2 0.385 2.215 5.4 14.1
Y2O3 0.296 2.284 5.0 12.7
AlP 0.214 2.365 4.6 5.5
AlAs 0.198 2.442 4.3 5.0
AlSb 0.169 2.646 3.5 3.8
GaP 0.214 2.359 4.6 5.9
GaAs 0.198 2.456 4.2 5.1
GaSb 0.171 2.650 3.5 4.0
InP 0.184 2.542 3.9 5.1
InAs 0.173 2.619 3.6 4.5
InSb 0.151 2.806 3.0 3.7
aReference [11]. bReference [14]. cCalculated by
dReference [16]. eReference [17]. fReference [8].
iReference [2]. jReference [1]. kReference [20]. lR
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equal to Eg in the case of a purely covalent Group IV
crystal such as diamond or Si. Ionic bonding results from
long-range electrostatic force which is not directly related
to hardness [8]. Recent work also indicates that the acti-
vation energies of dislocation glide in polar covalent
crystals are proportional to Phillips’s homopolar band
gap Eh [12], which characterizes the strength of the
covalent bond. Therefore, we can deduct the ionic con-
tribution C from the factor Eg, leave only a homopolar
component Eh for the hardness of polar covalent crystals,
which is given as follows [11] :

Eh � 39:74=d2:5; (4)

where d is the bond length in angstroms, Eh is in electron-
volts. However, the partly ionic bonding results in the loss
of covalent bond charge [13]. In other words, an electron-
pair localized on a chosen bond is screened due to partly
the hardness calculations of typical covalent
exp are calculated and experimental Vickers

easurements for compounds from HfO2 and
n displayed as a comparison.

Hv calc Hv exp Hk exp

fi (GPa) (GPa) (GPa)

0a 93.6 96� 5e 901

0a 13.6 12f 14i

0a 11.7 � � � � � �

0.006a 31.2 33� 2e 32i

0.256a 64.5 66f, 63� 5e 48i

0.4b 30.3 30� 2e 21i

0.449a 21.7 18g � � �

0.500a 18.1 15.1h � � �

0.578a 10.4 � � � � � �

0.177a 30.3 34f, 26� 2e � � �

0.140c 26.4 � � � 30j, 24f

0.57b 30.4 33� 2e � � �

0.796b 20.6 20� 2e 21i

0.687c 20.6 � � � 20j

0.78b 13.8 � � � � � �

0.602a 12.7 13f 12.5i

0.870c 10.8 13f 11.6i

0.570b 30.6 11f 8.2i

0.850c 9.8 � � � 9.9k

0.843d 7.7 � � � 7.5l

0.307a 9.6 � � � 9.4i

0.274a 8.5 � � � 5.0i

0.426a 4.9 � � � 4.0i

0.374a 8.9 � � � 9.5i

0.31a 8.0 � � � 7.5i

0.261a 6.0 � � � 4.4i

0.421a 6.0 � � � 5.4i

0.357a 5.7 � � � 3.8i

0.321a 4.3 � � � 2.2i

authors using the method [14,15].
gReference [18]. hReference [19].
eference [21].
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ionic bonding and results in a smaller effective covalent
bond number per unit area in comparison with that of Na
for pure covalent crystals. Here we introduce a correction
factor exp���fi� to describe this screening effect of
many bonds, i.e., use Naexp���fi� for polar covalent
crystals instead of Na for pure covalent crystals in
Eq. (1), where � is a constant, fi is ionicity of chemical
bond in crystal scaled by Phillips [11]:

fi � 1� E2h=E
2
g: (5)

In order to determine the correlation between the hard-
ness Hv and ionicity fi, we plot Hv=EhNa against fi for
some typical crystals from Table I as shown in Fig. 1. The
exponential regression equation is obtained as follows:

Hv�GPa� � A�Nae��fi�Eh � 14�Nae�1:191fi�Eh: (6)

For practical calculation of hardness, Eq. (6) can be
expressed as

Hv�GPa� � 556
Nae�1:191fi

d2:5
� 350

N2=3
e e�1:191fi

d2:5
: (7)

In order to confirm the practicability of Eq. (7), we
calculated the Vickers hardness of typical covalent and
polar covalent crystals and listed the results in Table I.
The good agreements between the experimental and cal-
culated values for the crystals with Vickers hardness
above 10 GPa demonstrate the predictive power of
Eq. (7). From the data in Table I, it can be deduced that
the unexpected smaller hardness of tungsten carbide re-
sults from its larger bond length and smaller bond density.

Martin has revealed that the elastic properties of the
sphalerite structure crystals, especially the shear modu-
lus G, follow approximately linear trends as functions of
the ionicity fi [22]. However, if we take into account
polar covalent crystals with different structures, the shear
modulus G does not show a systematic variation trends
C

Si3N4

FIG. 1 (color online). Hv=EhNa as a function of ionicity fi.
The solid line is from Eq. (7).
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with fi, and no direct relation between hardness and
shear modulus G can be established. Whereas as shown
in Fig. 1, the hardness can be approximately described by
an exponential function of ionicity.

It should be noticed that some secondary factors [7]
affecting hardness have not been considered in our
present model. As shown in Table I, �-SiO2 is such an
example. Its experimental hardness is only 11 GPa, re-
markably lower than its calculated value of 30.6 GPa.
This is due to its open crystal structure, which is built
up of SiO4 tetrahedra. These tetrahedra are linked only
by their corners and can easily tilt. Under pressure of the
indenter, the mechanism for plastic deformation and
volume change in �-SiO2 is the rotation and bending of
the framework tetrahedra about their shared oxygen
atoms rather than the broken of the bonds of the frame-
works [1,23].

Equation (7) will also be useful in predicting the trends
of hardness for new materials. Since multicomponent
compound systems are dominant in new materials, it is
necessary to extend Eq. (7) to these systems. Based on
Phillips scheme [11,14], a theory describing the chemical
bond of complex crystals has been developed by Zhang
et al. [15,16,24,25]. In the theory,‘‘crystal formula’’ is a
combination of subformula of chemical bond. The sub-
formula of any type of chemical bond A-B in the multi-
bond crystal AaBb . . . can be expressed by the following
formula:

�N�B-A�a=NCA	A�N�A-B�b=NCB	B; (8)

where A;B; . . . represent different elements or different
sites of the same element in the crystal formula, and
a; b; . . . represent numbers of the corresponding element,
N�B-A� represents the number of B ions in the coordina-
tion group of A ion, and NCA represents the nearest
coordination number of A ion.

Similarly, the hardness of muticomponent compound
systems can be expressed as an average of hardness of all
binary systems in the solid [26,27].When there are differ-
ences in the strength among different types of bonds, the
trend of breaking the bonds will start from a softer one.
Therefore, the hardness Hv of complex crystals should be
calculated by a geometric average of all bonds as follow:

Hv �

�Y�
�H�

v �n
�

�
1=$n�

; (9)

where H�
v � 350�N�

e �2=3e�1:191f
�
i =�d��2:5 is the hardness

of binary compound composed by �-type bond, n� is
the number of bond of type � composing the actual
complex crystal, f�i is the ionicity of binary compound
composed by �-type bond, which can be calculated
according to the literature [15,16,24,25], N�

e is the num-
ber of valence electrons of type � per cubic angstroms
and is expressed as follows [15,16,24,25]:

N�
e � �n�e �
=v

�
b ; (10)
015502-3



TABLE II. Chemical bond parameters and hardness of predicted �-BC2N crystal.

Cell Bond d� Eh Eg Hv calc Hv expt

Phase ( �A) type ( �A) N�
e (eV) (eV) f�i H�

� (GPa) (GPa)

�-BC2N a � 3:576 BN 1.562 0.680 13.2 15.0 0.227 66.9 78 76� 4a

b � 3:576 BC(2) 1.573 0.498 12.9 12.9 0.000 70.7
c � 3:608 C(1)C(2) 1.515 0.930 14.2 14.2 0.000 118.1
Z � 2 C(1)N 1.564 0.679 13.1 14.9 0.228 66.5

aReference [28].
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�n�e �
 � ��Z�
A�


=NCA � �Z�
B �


=NCB	; (11)

v�
b � �d��3=

X
�

��d��3N�
b 	; (12)

where �n�e �
 is the number of valence electrons per �
bond, �Z�

A�

 or �Z�

B �

 is the valence electron number of

the A or B atom constructing � bond, respectively, v�
b is

the bond volume, and N�
b is the bond number of type � per

unit volume.
Ternary B-C-N compounds have also been considered

as potential superhard materials. Cubic BC2N has been
synthesized [28], whereas there have been no correspond-
ing data of atom positions for cubic BC2N in the literature.
In order to calculate the hardness Hv, we have carried out
first principles calculation using the GGA approach of
density functional theory with the Material studio [29].
In the calculations, geometry optimization for BC2N was
performed with the same procedure as in the literature
[5], a �-BC2N type structure is derived from the optimi-
zation. According to the calculated crystal structure of
�-BC2N, and the chemical bond theory [15,16,24,25], we
can write its bond-valence equation as follows:

�-BC2N �BC�1�C�2�N � 1=2BN� 1=2BC�2�

� 1=2C�1�C�2� � 1=2C�1�N:

The parameters of each type of chemical bond are
calculated and listed in Table II. Based on this informa-
tion and Eq. (9), the Vickers hardness of �-BC2N crystal
is calculated and listed also in Table II. It can be seen that
the calculated Vickers hardness value for �-BC2N crystal
is very close to the experimental value of the synthesized
cubic BC2N crystal [28].

In conclusion, three conditions should be met for a
superhard material: higher bond density or electronic
density, shorter bond length, and greater degree of cova-
lent bonding. Our method presented here has satisfacto-
rily predicted the trend of hardness for polar covalent
solids. It has also built up a link between hardness and
first principles calculation, and thus could play an impor-
tant role in the design of new superhard materials.
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