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We measure the intensity correlation function of two interfering spatially displaced copies of phase
fluctuating Bose-Einstein condensates. It is shown that this corresponds to a measurement of the phase
correlation properties of the initial condensate. Analogous to the method used in the stellar interfer-
ometer experiment of Hanbury Brown and Twiss, we use spatial intensity correlations to determine the
phase coherence lengths of elongated condensates. We find good agreement with our prediction of the
correlation function and confirm the expected coherence length.

DOI: 10.1103/PhysRevLett.91.010406 PACS numbers: 03.75.Hh, 03.75.Nt, 39.20.+q
FIG. 1. (a) The interferometer is realized by two �=2 Bragg
diffraction pulses. We apply the first pulse after a ballistic
expansion time of 2 ms to reduce mean-field effects and atomic
scattering. The spatial displacement d is determined by the
time �t between the pulses. Typical line density profiles are
shown for a phase coherence length of L� � 25 	m with
d � 7 	m (b) and d � 35 	m (c). Only one of the two output
difference between the two copies introduced by the ports is displayed.
Since the first realization of Bose-Einstein condensa-
tion in dilute atomic gases, their coherence properties
have attracted considerable theoretical and experimental
interest. This interest is due to the central role of the
coherence properties for the theoretical description and
conceptional understanding of Bose-Einstein condensates
(BECs) and their use as a source of coherent matter waves
in many promising applications.

Remarkable measurements demonstrated the phase co-
herence of three-dimensional condensates well below the
BEC transition temperature Tc [1–3] and even at finite
temperature [4]. However, low dimensional systems show
a qualitatively different behavior. In particular, it has
been predicted that one-dimensional and even very elon-
gated, three-dimensional BECs exhibit strong spatial and
temporal fluctuations of the phase while fluctuations in
their density distribution are suppressed [5,6]. Thus, the
coherence properties are significantly altered, resulting in
a reduced coherence length which can be much smaller
than the condensate length. In this case, the degenerate
sample is called a quasicondensate. This regime has been
the subject of recent theoretical efforts, including
an extension of the Bogoliubov theory [7], a modified
mean-field theory valid in all dimensions [8,9], and a
calculation of the correlation functions [10]. Phase fluc-
tuations were first observed using the formation of density
modulations during ballistic expansion of a condensate
[11–13]. In addition, their effect on the momentum
distribution has been demonstrated using Bragg spectros-
copy [14,15]. Nonequilibrium properties of these conden-
sates have been studied using a condensate focusing
technique [16].

In this Letter, we report on a direct measurement of the
spatial correlation function of phase fluctuating BECs. To
measure the phase correlation properties, we interfere two
copies of a BEC with a spatial displacement d (Fig. 1). The
measured interference pattern is determined by the phase
pattern of the original condensate and a global phase
0031-9007=03=91(1)=010406(4)$20.00 
interferometer. By varying the displacement d, the first-
order correlation function can, in principle, be measured.
However, this method is very sensitive to fluctuations in
the global phase difference, and the measurement is fur-
ther complicated by the statistical nature of phase fluctu-
ations. We show that the use of intensity correlations in
the interference pattern overcomes these problems and
provides the desired information about the phase corre-
lations in the initial condensate. The result of this
measurement is described by the spatial second-order
correlation function and yields the phase coherence
length of the BEC. In many respects, our measurement
is closely related to the stellar interferometer of Hanbury
Brown and Twiss [17]. They measured the intensity of
starlight falling onto two detectors and computed the
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intensity correlations electronically as a function of
the detectors’ distances. This measurement yields the
transverse coherence length of the stellar light and
allowed them to determine the stars’ diameters. Unlike
the Michelson stellar interferometer, which uses first-
order correlations, atmospheric fluctuations do not disturb
this measurement. Similarly, global phase fluctuations in
the interferometer setup do not disturb our measurement.

Our experiments were performed with very elongated
three-dimensional 87Rb Bose-Einstein condensates in the
jF � 1; mF � �1i hyperfine ground state. Further details
of our experimental apparatus were described previously
[12]. The confining potential was provided by a clover-
leaf-type magnetic trap with an axial trapping frequency
of !x � 2�� 3:4 Hz and a radial frequency adjusted
between !r � 2�� 300 and !r � 2�� 380 Hz. The
number of condensed atoms N0 was varied between 4�
104 and 6� 105. To allow the system to reach an equilib-
rium state, we typically waited 4 s after obtaining BEC
by evaporative cooling (with rf ‘‘shielding’’) [18]. The
interferometric scheme is shown in Fig. 1 and is based on
two �=2 Bragg diffraction pulses. These pulses were
produced by two counterpropagating laser beams with a
frequency difference set to the two-photon resonance.
They were detuned by about 3 GHz from the atomic
resonance to suppress spontaneous emission. The pulse
duration of 100 	s was chosen long enough to avoid
higher-order diffraction and sufficiently short to avoid
any sensitivity to the internal velocity distribution of
the phase fluctuating BECs. After a time-of-flight of 30
to 40 ms, the two output ports spatially separate and the
atoms were detected by resonant absorption imaging. We
integrate the absorption images along the radial direction
of the condensate and subtract the thermal background to
obtain line density profiles.

Typical measured line density profiles are shown in
Fig. 1. When the displacement d between the overlapping
clouds is chosen smaller than the phase coherence length
in the sample [Fig. 1(b)], regions with almost identical
phases are brought to overlap and the resulting interfer-
ence signal is rather smooth. If, however, d is larger than
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the phase coherence length, regions with substantially
different phases overlap, resulting in an irregular but
high contrast interference signal [Fig. 1(c)]. In both cases,
an average over many realizations and relative phases
results in the same smooth profile in the two output ports
of the interferometer, revealing no information about the
coherence properties. Nonetheless, Fig. 1(c) clearly con-
tains information about the spatial coherence properties.
An appropriate analysis of the correlations in the density
profile yields an intensity correlation function that does
not vanish in an averaging process and contains the
desired information about the coherence properties.

We therefore start our analysis by calculating the spa-
tial second-order correlation function for the case of
phase fluctuating BECs. In its most general definition it
is given by

g�2��x1; x2; x3; x4� �
h ̂ y�x1� ̂ 

y�x2� ̂ �x3� ̂ �x4�iT�����������������������������������������Q
4
i�1h ̂ 

y�xi� ̂ �xi�iT
q ; (1)

where h. . .iT denotes an average over an ensemble at
thermal equilibrium at temperature T. It contains the
spatial intensity correlation function g�2��x1; x2� �
g�2��x1; x2; x2; x1� as a special case. For 3D condensates
with repulsive interactions in elongated trapping poten-
tials, density fluctuations are suppressed by the mean-
field potential [6,13,14]. Therefore the total field operator
of the condensed atoms can be written as  ̂ �x� ������������
n0�x�

p
exp�i�̂��x��, where �̂��x� is the operator of the phase

[6] and n0�x� is the density in the Thomas-Fermi approxi-
mation. For this field operator, one can show that all
higher-order correlation functions can be expressed as
products of the first-order correlation function [19].
Using the explicit expression of the phase operator given
by Petrov et al. [6], we obtain the second-order correlation
function:
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where P�1;1� are Jacobi polynomials, j is a positive integer,
j
2L is the condensate length, and

l� �
L�
L

�
15N0� �h!x�

2

32	kBT
(4)

is the phase coherence length in the condensate center (in
units of L). Here 	 denotes the chemical potential and kB
the Boltzmann constant. The function f�2� is shown in
Fig. 2 and contains the functional form of phase fluctua-
tions in elongated condensates. All experimental parame-
ters are contained in the phase coherence length l�.
Let us demonstrate how the interferometric sequence
described above can be used to measure g�2�. In each
output port of the interferometer, the superposition of
two ballistically expanded spatially displaced copies of
the original wave function is produced. The field operator
of the atoms in one output port can be expressed as

 ̂ f�x; d� �
1
2�

�����������������������
n�x� d=2�

p
ei�̂�


�x�d=2�



�����������������������
n�x
 d=2�

p
ei�̂�

��x
d=2�ei�rel�; (5)

with �̂���x� � �̂��x� � �x
 �x2 [20]. The linear term
results from the mean-field repulsion between the copies
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FIG. 2. Numerical computation of the function f�2��s; d� �
f�2���s�d2 ; s
d2 ; s�d2 ;�s
d2 � for three different d. From top to
bottom: d=L � 0:3, 0.2, 0.1. The particular choice of positions
corresponds to the experimentally relevant case.
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of the condensate [21] and the quadratic term originates
from the self-similar expansion [22,23]. The self-similar
expanded density distribution n�x� differs only slightly
from the initial distribution because the increase of axial
size during expansion is small for very elongated con-
densates (about 1% for our experimental conditions). The
relative global phase between the two overlapping clouds
�rel �  12�t
  �eff is determined by the Bragg diffrac-
tion process, where  �eff is the change in the relative
phase of the Bragg beams between the two pulses and  12

is the detuning from the two-photon resonance. In our
experiment,  �eff can be controlled by using an electro-
optical modulator [24],  12 depends on the frequency
difference of the Bragg beams and the axial release
velocity of the condensate. Note that even a small change
in the release velocity of 0:033 	m=ms leads to a phase
change of �=2 for a time �t � 3 ms between the Bragg
pulses. The insensitivity to such randomly varying global
phases is a major advantage of the intensity correlation
method.

In analogy to the definition of the correlation coeffi-
cient, we define a normalized intensity correlation func-
tion

!�2�
f �x1; x2; d� �

h�ÎI1 � hÎI1i��ÎI2 � hÎI2i�i���������������������������
h�ÎI1 � hÎI1i�

2i
q ���������������������������

h�ÎI2 � hÎI2i�
2i

q ; (6)

with the intensity operator ÎI1;2 �  ̂ y
f �x1;2; d� ̂ f�x1;2; d�.

Here the averages are taken over an ensemble in
thermal equilibrium and over all relative phases. The
possible values of !�2�

f range between 
1 (perfect corre-
lation) and �1 (perfect anticorrelation); if ÎI1 and ÎI2 are
uncorrelated !�2�

f � 0. By substituting Eq. (5) into Eq. (6),
we obtain
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f �x1; x2; d� � cos�2�x1 � x2���d� ���

� exp
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The normalized intensity correlation function is the
product of two contributions. A cosine resulting from
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the self-similar expansion and mean-field repulsion and
an exponentially decaying term containing the influence
of the phase fluctuations. The decay constant of this
function is the phase coherence length. Comparison
with Eq. (2) shows that a measurement of !�2�

f is equiva-
lent to a measurement of the second-order correlation
function of the trapped condensate.

The measurement of !�2�
f is performed in the following

way: For a given trap configuration, evaporative cooling
ramp, and fixed displacement d, a series of measurements
is recorded by scanning the relative phase of the Bragg
beams with the electro-optical modulator in small steps
between 0 and 2�. This ensures that the global phase �rel

contains all values with equal probability. We experimen-
tally determine !�2�

f analogous to Eq. (6). The ensemble
averages hÎI�x�i are obtained by averaging all interference
patterns I�x� recorded in a series. Then the quantity
I�x� � hÎI�x�i can be determined for each realization.
The average of these values according to Eq. (6) yields
!�2�
f . To simplify the analysis, we evaluate !�2�

f at sym-
metric positions around the center of the interference
pattern such that x1 � �x2 � s=2. Then !�2�

f �s; d� �
!�2�
f ��s=2; s=2; d� can be expressed as a function of s

for a given displacement d. Typical results are shown in
Fig. 3, clearly displaying the functional form of a damped
cosine.

To extract quantitative results, we fit the measured
function with the theoretical function given in Eq. (7).
The fit contains only l� and the frequency of the
cosine as free parameters. Figure 3 compares measured
correlation functions with the corresponding fits, con-
firming the excellent agreement with the expected
functional form. Although the phase coherence length
also depends on the trapping potential and the tempera-
ture, the data sets shown in Fig. 3 differ mainly due
to the number of condensed atoms, which was set
to 4:4� 104 (�), 2:9� 105 (+), and 5:0� 105 (�).
Except for the smallest atom number, a minimum is
clearly visible and unambiguously defines the fre-
quency of the cosine [25]. The damping of this oscillation
yields the phase coherence length. As expected [see
Eq. (4)], the damping is stronger for small N0. In the
case of the smallest N0, no oscillation is visible, indicat-
ing a significant decrease of the phase coherence length.

We have performed such measurements for a large
variety of atom numbers and temperatures. The good
agreement between the measured phase coherence length
obtained from the fit and the theoretically predicted result
is shown in Fig. 4. By varying the displacement d, we
have confirmed that the measured phase coherence
lengths are independent of this parameter. In all cases,
the phase coherence length was much smaller than the
condensate length, which ranged from 280 up to 420 	m,
i.e., our measurements were performed in the quasicon-
densate regime.

Thus far we have neglected the evolution of the phase
fluctuations during ballistic expansion. This evolution
010406-3
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FIG. 3. Measured correlation functions (points) compared to
fitted theoretical curves (lines). Each measured function is
based on � 25 realizations and plotted up to s � 0:8L.
Neighboring points are not independent since they are based
on a common set of experimental realizations. The error bars
represent the statistical uncertainty. Inset: Numerical simula-
tion including the phase and density evolution (points) and the
analytical function Eq. (7) (line), both for the parameters of
the L� � 40 	m curve.
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leads to a change of the original phase pattern and the
appearance of density modulations. Using the full evolu-
tion of the wave function [19], we have calculated the
expected phase change during time of flight to be less
than�=10 for our parameters. To evaluate the influence of
density modulations on our measurements, we have per-
formed numerical simulations including the phase and
density evolution. The inset of Fig. 3 compares a numeri-
cal result with Eq. (7). The excellent agreement demon-
strates that this evolution can be neglected for our
intensity correlation measurements and justifies the use
of Eq. (7) to extract the phase correlation properties.

In conclusion, we have demonstrated a new interfero-
metric method which allows us to measure the spatial
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FIG. 4. Measured phase coherence length compared to the
theoretically expected result given by Eq. (4). The dotted line
f�x� � x is a guide to the eye. The error bars indicate statistical
errors. Systematic uncertainties are 26% and 15% for the
calculated and measured L�, respectively.
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correlation function of phase fluctuating BECs. First, the
second-order correlation function was calculated and it
was shown that this function can be measured using
intensity correlations in the interference pattern. Our
measurements were then compared with these results,
confirming both the expected functional form of the
correlation function and the phase coherence length of
the sample. We have confirmed that this technique is
insensitive to fluctuations of the relative global phase
during the interferometric measurement sequence.
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