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Energetically Stable Particlelike Skyrmions in a Trapped Bose-Einstein Condensate
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We numerically show that a topologically nontrivial 3D Skyrmion can be energetically stable in a
trapped two-component atomic Bose-Einstein condensate, for the parameters of ®’Rb condensate
experiments. The separate conservation of the two atomic species can stabilize the Skyrmion against
shrinking to zero size, while drift of the Skyrmion due to the trap-induced density gradient can be

prevented by rotation or by a laser potential.

DOI: 10.1103/PhysRevLett.91.010403

Localized topological excitations that do not perturb
the order parameter field at large distances from the
particle, and which are characterized by a topologically
invariant winding number, are well known in nuclear and
elementary particle physics [1-4]. While their study in
nuclear physics remains an experimental challenge, the
recent experimental progress in atomic Bose-Einstein
condensates (BECs) with internal spin degrees of free-
dom [5,6] has raised the possibility of the existence
of well-localized topological Skyrmions in atomic
gases [7-9]. In this Letter we identify, and show how to
overcome, the specific instabilities of Skyrmions in
trapped two-species atomic BECs and hence demonstrate
their energetic stability under realistic experimental
conditions.

Battye et al. [9] recently considered an infinite homo-
geneous two-species BEC, with constant total atom den-
sity. They showed that an energetically stable Skyrmion
may exist as a result of phase separation of the two
species, which suppresses the decay. These calculations
were extended to nonconstant total atom density and to
the trapping of one component [10]. In this Letter we
show that in a harmonically trapped system there are
additional instabilities, not considered in Refs. [9,10],
which will play a crucial role in the experimental real-
ization of Skyrmions in atomic BECs. Additional physi-
cal mechanisms, such as rotation or optical potentials,
will be required for stability. We also show how density
fluctuations, associated, e.g., with phonon emission [11],
are important in the Skyrmion decay process.

There has been an explosion of interest in vortex and
soliton experiments in atomic BECs [12], and we antici-
pate similar developments for other topological objects.
Hence we identify the Skyrmion energetic stability cri-
teria for the parameters of the JILA two-species 3’Rb
experiments [5]. We find a threshold frequency below
0.1w, when only one species is rotated, and a narrow
window of rotation frequencies for the entire system
around 0.085w. We numerically evaluate the stable con-
figurations (Fig. 1) by minimizing the energy of the full
3D mean-field theory of coupled Gross-Pitaevskii equa-
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tions (GPEs) and calculate the associated topological
charges.

A Skyrmion is a topological particlelike soliton solu-
tion with a coreless 3D texture. Besides their intrinsic
fundamental interest, Skyrmions have important appli-
cations in nuclear physics [1-3], and analogous structures
are postulated for early Universe cosmology [13].
Skyrmions are localized objects such that the order
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FIG. 1 (color online). Density and order parameter profiles
for energetically stable trapped Skyrmions (N, = N_ = 4.5 X
10°). Top: 3D densities. The central (blue) tori are isosurfaces
of |if_|?. Isosurfaces of |, |? (red) are shown for x < 0: on the
y-z plane between the isosurface sections its density is indi-
cated by a color map from red (lowest) to purple (highest).
Left: Stabilized by rotating _ only, with angular velocity
0.1w. Right: stabilized by rotating the entire system with an-
gular velocity 0.085w. Bottom: 1D densities (left axis, units of
xh’03) and the order parameter profile A(x, 0,0) (right axis,
dotted line) for rotating #_ only. Solid line: |y |*> + |_|%.
Dashed line: |, |>. Dash-dotted line: |¢_|>. A(x, 0,0) is ex-
tracted from the wave functions. The notch in A is due to the
mean-field repulsion inflating the vortex ring core. A(r) is
highly anisotropic, with A(0,0,z) qualitatively close to
2 arctan(|z|).
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parameter field becomes uniform sufficiently far from the
particle. As a result, we may enclose the Skyrmion by a
sphere on which the field configuration has a constant
asymptotic value. This sphere can be mapped to a single
point in the order parameter space. Topologically, it in-
dicates that the 3D physical region inside the sphere can
be represented by a compact 3-sphere S* (a sphere in 4D)
[14]. Here we consider a SU(2) order parameter space
which topologically also corresponds to S3. Then the
mappings from the compactified 3D physical region to
the order parameter space are represented by the field
U(r): $*> — SU(2). The crucial point is that having asso-
ciated the enclosing sphere with a single point in 3, we
place the elements of the physical space into a correspon-
dence with the elements of the compact order parameter
space SU(2). The mappings from S to SU(2) fall
into topological classes, each characterized by an integer-
valued winding number W [1,7,9]:

ea 14
W= Tj_z[d3rTr[U(6aUT)U(aBUT)U(a,,UT)]. (1)

Here €,p, denotes the completely antisymmetric tensor,
the repeated indices are summed over, and 9; represents
the derivative with respect to the spatial coordinate x;.
The topological charge describes how many times the set
of points in physical space is “wrapped’ over the order
parameter space of SU(2) for a given element U(r).

With cold atoms an SU(2) order parameter space is
afforded most simply by a two-component BEC, whose
interactions effectively fix the local value of the total
density [, (r)]> + [_(r)]> = p(r) of the two complex
macroscopic wave functions ¢, and ¢_ [7]. We may then
express the two-component BEC as

)y o

We search for a topologically nontrivial solution for U(r)
with a nonvanishing winding number, determined by
Eq. (1). By minimizing the energy of the corresponding
trapped BECs, we may investigate the energetic stability
of the Skyrmion and find its equilibrium configuration.
As an initial state for the numerical simulations we use
U(r) = expliA(r)a - t] [15], or a similar state displaced
from the trap center, where o; denote the Pauli spin
matrices and ¥ represents the unit radial vector. A direct
substitution into Eq. (1) yields W = 1 for a monotonic
function A with A(0) = 0 and A = 7 at the gas boundary.
The corresponding BEC wave functions read

o)\ cos[A(r)] — isin[A(r)] cosd
(50) =2 awsmventsr @

Here (A, 0, ¢) can also be understood as the spherical
angles of the 3-sphere. Then the boundary of the atom
cloud corresponds to the pole A = 7 of the 3-sphere.
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Because of the topological stability of the Skyrmion,
any continuous deformation of Eq. (3), without altering
the asymptotic boundary values, is still a Skyrmion with
W = 1. Here, ¢_ (the “line component’’) forms a vortex
line with one unit of circulation around the core oriented
along the z axis (Fig. 1). Moreover, ¢, (the “ring com-
ponent”’) forms a vortex ring with one unit of circulation
around its core on the circle z =0, r = )Fl(g) [7]. The
line component is confined in a toroidal region inside the
ring component in the neighborhood of the ring core.

Despite its topological stability, the Skyrmion solution
in several physical systems is energetically unstable
against shrinking to zero size without additional stabiliz-
ing features. This can be understood by means of simple
scaling arguments: if the kinetic energy density, or the
order parameter ‘“‘bending energy,” is quadratic in the
gradient of the order parameter, this energy density scales
as 1/R? with respect to the size R of the Skyrmion.
Because the Skyrmion occupies a volume proportional
to R3, the energy E = R monotonically decreases with the
size of the Skyrmion. In the Skyrme model, the stability
is provided by an additional interaction term, with the
energy density scaling as 1/R* [1].

It was proposed that, in a two-component BEC, the
separate conservation of the species can effectively sta-
bilize the Skyrmion in a homogeneous space against
collapse to zero size [9]. In the regime of phase separa-
tion, with the scattering lengths satisfying a,,a__ =
a’ _, the two species can strongly repel each other and
the toroidal filling due to the line component can prevent
the vortex ring from shrinking to zero radius [7,9]. Con-
sequently, a filled vortex ring, as opposed to an empty
vortex ring, can be more stable against collapse. More-
over, in the Skyrmion the filling has one unit of angular
momentum about the z axis resulting in a 1/r? centrifugal
barrier that further prevents the shrinking. This should be
contrasted to the Skyrmions in a ferromagnetic spin-1
BEC [8], which are closely related to the Skyrmion ex-
citations proposed in superfluid liquid *He [16], and can
freely mix the atoms between the different spin compo-
nents. As a result, no stabilizing features due to the atom
number conservation exist in that case.

We next study numerically the energetic stability of the
Skyrmion using the full 3D mean-field theory of the
coupled GPEs without additional simplifications:

2
in; = (‘f—mvz + V() + ZKikaP)lﬁi- “)
x

Our simulations are performed for the parameters of the
JILA two-species vortex experiment using perfectly
overlapping isotropic trapping potentials for both states
V(r) = mw?r?/2, with @ = 27 X 7.8 Hz and harmonic
oscillator length x,, = (Ai/mw)"/? ~3.86 um [5]. In
the interaction coefficients, «;; = 47Tﬁ2a,-jN,»/m, the num-
ber of atoms in each species is represented by N;, a;;
denotes the intraspecies, and a;; (i # j) the interspecies,
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scattering length. For the |F = 2, m; = 2) and [1, 1) spin
states of 8’Rb we have [17] a,, =5.67nm, a__ =
5.34 nm, a,_ = 5.50 nm. The GPEs depend on the di-
mensionless interaction coefficients Kﬁj = 47N, a;;/ Xno-
Hence, the dynamics is unchanged in any scaling of
length and time, which does not change N?w.

We found the ground states by imaginary time
evolution of the GPEs (4), using Runge-Kutta [18] and
split-step algorithms. At every time step, we separately
normalized both wave functions to fix the atom number in
each component. The numerical simulations were fully
3D, allowing for cylindrically asymmetric dynamics. The
most demanding numerics was performed on a parallel
multiprocessor supercomputer, using up to 32 processors.
Spatial grids of 1283, 2563, and 512% were used. A typical
spatial range and imaginary time step were 30x;,, and
0.0025/ w.

As a cylindrically symmetric initial state we used the
Skyrmion (3) with the Thomas-Fermi density profile
[15], resulting in W = 1. The winding number was cal-
culated during the imaginary time evolution to determine
the stability of the Skyrmion. For small BECs, with Ny =
10* atoms (N = N, + N_), the nonlinear repulsion be-
tween the two species was too weak to prevent the
Skyrmion from shrinking for any N_/Ny. Also the line
component ¢ _ rapidly diffused to the boundary of the
finite-size atomic cloud, altering the boundary conditions
and resulting in a decreasing winding number W < 1.
Because the topological stability of the Skyrmion neces-
sitates a well-defined asymptotic boundary condition
with no phase variation, the Skyrmion was clearly lost.
This decay mechanism is characteristic of trapped BECs
and cannot occur in homogeneous systems, which im-
plicitly assume large N, /Ny.

For large BECs with N; > 109, represented in Fig. 2,
the same instability mechanism was observed with a very
large fraction of line component N_ /Ny = 0.75. In other
cases displayed in Fig. 2, the winding number typically
evaluated to either O or 1 to better than 1%, with A = 7
well preserved at the boundary. A drop from W =1 to
W = 0 indicated instability of the Skyrmion against
shrinking (Fig. 3 inset). The Skyrmion collapse via
shrinking occurred when the high density central part
of the ring component, which passes through the line
component vortex core, pinched off. The total density
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FIG. 2. Skymion stability diagram. Total atom number N7 vs
the fraction in the line component N_/Ny. X indicates insta-
bility. ® indicates stability of the cylindrically symmetric state
against shrinkage, which may be stabilized against drift as
discussed in the text.
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varies significantly at the trap center when the vortex
ring core collapses, emphasizing the importance of
density fluctuations in the decay process; see Fig. 3.
With sufficiently large BECs, even for the collapsed
Skyrmions with no vortex ring, the local energetic
minimum can correspond to a line component trapped
inside a toroidal region with ¢y, forming an atom-optical
confinement.

For sufficiently large total and line component atom
numbers, the nonlinear repulsion between the two species
was strong enough to inhibit the collapse of the vortex
ring, stabilizing the Skyrmion against shrinking for cy-
lindrically symmetric initial states (Fig. 2). However, due
to the inhomogeneous potential, the Skyrmion was still
unstable with respect to drift towards the edge of the
BEC where its energy is lower. This was found using
cylindrically asymmetric initial states, emphasizing the
importance of the full 3D simulation. The drift occurred
with the vortex line moving towards the boundary. Once
the vortex line drifted to a low-density region, the non-
linear repulsion was no longer strong enough to prevent
the shrinking of the Skyrmion and the collapse occurred
as described above; see Fig. 3 (bottom). The drift reduces
the total angular momentum of the atoms indicating an
energetic instability. Physically, this results from dissipa-
tion, e.g., due to thermal atoms.

We have investigated how Skyrmions might be stabi-
lized against the vortex drift instability. Perhaps the
simplest is to rotate the line vortex component about the
z axis, above its critical angular velocity, thus stabilizing
the vortex. This should always work for cylindrically
symmetric traps in which the symmetric density prevents
the rotation coupling into the other BEC component. For
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FIG. 3 (color online).
evolution. Top: densities (units of x;;’) along the x axis. |y,
it = 20 (dash-dotted line), 27.75 (dashed line), 28 (solid line),
50 (dotted line). The dotted curve which is zero at x = 0 is
lp_|> at it = 50; for other times it is qualitatively similar.
W = 0 by it = 28.25, and it = 50 is the stationary state. N, =
N_ =23 X 10°. Inset: winding number W versus imaginary
time. Bottom: densities on the z = 0 plane, left |[¢_|?, right
[y, [2. Since there is no stabilization, the line vortex core (red
circle) has moved towards the boundary and the ring vortex
(surrounding the blue circle) is about to collapse. Color map
and parameters same as for Fig. 1.

Decaying Skyrmion’s imaginary time
[*:
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the case of Fig. 1 a line component angular velocity of
0.1w stabilized the Skyrmion.

Rotation of both species introduced a new instability
mechanism. For sufficiently rapid rotations the line com-
ponent again reached the boundary, resulting in W < 1.
At the same time the ring vortex accommodated the
rotation by twisting and finally breaking at the gas
boundary. Nevertheless, for the case of Fig. 1, we found
a small range of angular velocities around 0.085w for
which the Skyrmion was stable against this, and against
line vortex drift. It stabilized off the rotation axis, in-
dicating an equilibrium between the lower energy of the
line vortex and the higher energy of the ring component
threading through it with increased distance from the
trap center. The breaking of cylindrical symmetry implies
a family of degenerate Skyrmions parametrized by the
polar angle ¢.

Another method for stabilizing the Skyrmion is to
inhibit the drift towards low-density regions by creating
a positive density gradient around the vortex line.
This can be implemented with a blue-detuned Gauss-
ian laser beam along the z axis [19], providing a cylin-
drically symmetric repulsive Gaussian dipole potential
perpendicular to the z axis. The total potential then
has the “Mexican hat” form: V = mw?r?/2 +
Voexp[—2(x* + y?)/w?]. Setting w = 7x,, and V, =
25hw, corresponding to about twice the width of the
vortex line core, successfully stabilized a Skyrmion
with Ny = N_ = 8 X 10°,

Proving numerically that a Skyrmion is stable is diffi-
cult. The essential requirement is that it be stationary
under imaginary time evolution. This was determined
by plotting the density on 1D sections through the sys-
tem, and the phase variation on 2D slice planes. In
unstable cases these would evolve until the Skyrmion
decayed. When they became asymptotically constant
as a function of imaginary time the Skyrmion was judged
to be stable. Convergence was particularly slow, and
hence difficult to establish, when both species were
rotated.

The Skyrmion can be created using electromagnetic
fields to imprint topological phase singularities on the
matter field while changing the internal state of the
atoms, as proposed in Ref. [7]. In particular, a vortex
ring can be engineered in a controlled way with an
appropriate phase-coherent superposition of three orthog-
onal standing waves. Because of dissipation, the prepared
Skyrmions relax to the ground states calculated here.

Different spin textures are often referred to as
“Skyrmions,” even when they are not characterized by
the topological invariant (1). It is important to emphasize
that the Skyrmions studied in this Letter are fundamen-
tally different from the nonsingular Anderson-Toulouse
or Mermin-Ho vortices [20], frequently also called
Skyrmions [21].
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