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Local Stress Relaxation and Shear Banding in a Dry Foam under Shear
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We have developed a realistic simulation of 2D dry foams under quasistatic shear. After a short
transient, a shear-banding instability is observed. These results are compared with measurements
obtained on real 2D (confined) foams. The numerical model allows us to exhibit the mechanical
response of the material to a single plastication event. From the analysis of this elastic propagator, we
propose a scenario for the onset and stability of the flow localization process in foams, which should
remain valid for most athermal amorphous systems under creep flow.
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Amorphous glassy materials are ubiquitous in industry
and nature: they include silica-based glass-formers and
polymer melts below 7', dense colloidal suspensions and
emulsions, foams, and dense granular systems. Unlike
crystalline solids, plasticity in such systems originates
from discrete local relaxation events [1,2], involving a
small number of particles (atoms, grains, bubbles, etc.).
Spatial and time correlations in the occurrence of these
plastic events are generally important, leading to ava-
lanchelike dynamics [3—5] and spatially inhomogeneous
flows [6—8]. Glassy rheology thus remains one of the most
active and challenging domains of statistical physics.

Among the large number of theoretical and numerical
models recently proposed, foam has emerged as a
strongly inspiring model system [9-11]. First, because
thermal energy is strictly irrelevant on bubble scale, creep
flow experiments can be run (by imposing an infinitely
low deformation rate) in which time dependent effects are
absent. Second, the bubble mechanics is simple and yields
awide linear elastic regime. Finally, plasticity in foams is
associated with well-identified processes. In spite of this
apparent simplicity, many features of foams flow remain
to date unexplained [12]. Thus, shear-banding flows have
been recently exhibited in a 2D Couette experiment [13].
In this study, a monolayer of bubbles squeezed between
two glass plates was slowly sheared between two concen-
tric discs. Much of the rearrangements were found to
occur in a thin region (a few bubbles in width) along
the edge of the inner disc. In the present Letter, we
directly address this question by developing a numerical
model adapted to the quasistatic shearing of 2D dry
foams. The observed flow features are compared with
experimental data obtained with the same setup as in
[13]. This model allows us to investigate the microscale
mechanics of the foam leading to strain localization.

We use Voronoi tessallation to build polydisperse struc-
tures of W X L = 16 X 48 cells separated by straight
segments. These are later referred to as bubbles and films,
respectively, by analogy with real foams, the intercept
between films being called a vertex. These structures have
periodic boundary conditions along the x direction, and
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films laying at the upper and lower edges are fixed to
allow subsequent plane parallel shearing [Fig. 1(a)]. To
obtain a mechanically equilibrated structure, the total
film length is minimized at fixed topology and with a
constant volume constraint on each bubble, as expected
for static dry foams [14]. Our algorithm is based on
Surface Evolver [15], a software widely used in foams
structural studies [16]. The main difficulty of this mini-
mization procedure comes from the existence of very soft
modes associated with large-scale shear deformations
[17]. A special care is thus put in equilibrating these
modes. The overall procedure is then validated by im-
posing various strain fields to the initial foam, and
checking that the resulting equilibrated structure remains
unchanged.

Once the foam has been mechanically equilibrated,
plasticity is introduced by allowing 71 rearrange-
ments—the elementary topological changes in 2D foams
[see Fig. 1(b)]. In a real dry foam, vertices have a finite
size which depends on the liquid fraction. When a film
becomes smaller than this length, the two vertices attract
and a T'1 event is triggered. We mimic this criterion by
exchanging bubbles neighbors when one of the film length

FIG. 1. (a) Snapshot of a simulated foam with 16 X 48 bub-
bles. The polydispersity is 6%. The foam has periodic boundary
conditions along the x direction. Films laying at upper and
lower edges are fixed; shearing is obtained by moving the lower
edge along the x direction. (b) Example of a topological change
(T'1 process) occurring inside the foam upon shearing.
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falls below a fixed value [,, corresponding to a liquid
fraction ¢ = 1%. The T1 events are triggered one at a
time and followed by a complete mechanical equilibra-
tion. This two-step procedure is iterated until all films are
stable with regards to the T'1 criterion. It should be noted
that this procedure might not precisely reflect the physi-
cal process taking place during an avalanche of T'1 events.
Indeed, in a real foam plasticity and mechanical equili-
bration take place simultaneously. Our procedure implic-
itly assumes the latter to be much faster than the T'1 event.
Finally, the foam is quasistatically sheared by iteratively
moving the lower edge over a short distance then equili-
brating the structure and allowing plastic events.

Figure 2 conveys the main result of the present study: it
displays the yy; positions of the rearrangements as a
function of the imposed wall displacement D. After a
short transient (for D ~ W i.e., an imposed strain ~1),
the rearrangements permanently gather within a thin
shear band in the vicinity of the lower wall. This strain
instability is observed for all the simulations, with a flow
localization taking place on either wall depending on the
initial foam structure. In the following we mainly focus
on measurements performed in the steady-state localized
regime.

From the sequence of equilibrated structures, we mea-
sure the trajectories of the bubbles centers to extract the
flow field at each time step. Furthermore, we can compute
the internal shear stress on any subvolume w using the
following relation_(where the summation is performed
over all segments [ inside w) [12]:
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FIG. 2. Localization process in a simulated foam. (a) The y
position of the T'1 events as a function of the wall displacement
D expressed in bubble diameter. (b) Distribution of the y
positions of the 71 events for D <15 (transient regime)
and (c) D > 20 (localized regime). In the latter, the dotted
line shows the gradient § du (y) of the associated plastic flow
profile T(y).
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We have compared time averaged measurements from
the simulation with experimental data we obtained using
the same liquid fraction (¢ = 1%). Figure 3 shows the
tangential velocity profiles and the normal velocity fluc-
tuations for the experiment and the simulation. For both
quantities, we observe similar decays with the distance
from the wall. Other flow features, such as the stress
fluctuations profiles (presented below), show a similarly
good agreement. This adequacy proves the validity of the
present simulation. Conversely, it demonstrates that the
shear banding observed in [13] is not due to the Couette
geometry, in which the mean stress decreases with the
distance from the inner disc.

Beyond these time averaged measurements, the simu-
lation allows one to study the evolution of the foam on
short time scales. The dynamics can be separated into two
elementary processes, associated with different simula-
tion time steps: (i) charge periods over which the position
of the wall is incremented without plastication. The re-
sulting deformation is linear and the shear stress tensor
uniformly increases. This allows us to extract a shear
elastic modulus w. This modulus is found to weakly
depend on the total applied strain and is considered as a
constant in the following. (ii) plastic yielding, during
which the stress is relaxed through discrete 71 events.
To analyze in detail the latter, we focus on the displace-
ment and shear stress fluctuation fields produced by a
single rearrangement. The spatial resolution is enhanced
to below one bubble diameter by averaging these results
over 100 individual 71 events located at the same yg;
coordinate.

Figures 4(a) and 4(b) display the average displacement
profiles associated with T'1 events located at two different
distances y7; from the lower wall. Both profiles exhibit a
strong discontinuity at the rearranging line, whereas the
rest of the material is uniformly deformed with a strain
amplitude der;. Regardless of the position yz;, der; =
1.07 d?/(WL) (with a 30% statistical dispersion over
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FIG. 3. Comparison of time averaged measurements obtained
from (a) experiments on 2D foams in a Couette cell and
(b) simulated foams. 7 is the tangential velocity rescaled by
the wall velocity vg. /03 is the normal mean square displace-
ment, associated with a time lapse 7 = 0.25 d/v,, where d is

the average bubble diameter. The rapid drop of ,/ii in (b) far

from the moving wall is due to the relatively small width of the
simulated foam (W = 16), and hence the presence of the other
confining wall.
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FIG. 4 (color). Displacement and variational shear stress field
associated with a single 7'1 event. Each of these results has been
obtained by averaging over ~100 different T'1 events located at
the same distance yr; from the shearing wall. (a) and (b): line
averaged displacement profiles (expressed in bubble diameter
d), for a T'1 event located at y;; = 3 and 8, respectively. dery
represents the mean strain released by the 7'1 event. (c) and (d):
Corresponding shear stress variation fields. Red color indicates
an increase of the stress (relative to the imposed shear stress),
blue color indicates a stress relaxation. The arrows show
approximately the motion of the rearranging bubbles during
the T'1 event.

different T'1 events), where d is the mean bubble diameter
and WL is the foam area.

This elementary strain Se7, can be interpreted from
two different viewpoints. On one hand, it represents a
plastic strain amplitude: each 71 event increments the
plastic flow gradient at y = y;; by —de€r in average. This
yields the following kinematic relation between the plas-
tic flow profile v(y) and the spatial distribution of T'1
events:

o
a—ly’(y) = W w(y) der,, 2)

where w(y)dy is the frequency of T'1 events occurring
between y and y + dy. This relation can be directly
exhibited by overplotting the plastic velocity gradient
on the T'1 spatial distributions [see Fig. 2(c)]. On the other
hand, der, is a uniform elastic strain relaxation. The
associated stress can be independently evaluated using
Eq. (3) yielding a line-averaged uniform stress release
601, = moer;. By taking into account both the elastic
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charge and T'1 relaxation, we derive an equation of evo-
lution of the line-averaged shear stress & (y), valid for any
line y between 0 and W:

970) _

ot ®)

W
my - M5€T1]O w(y)dy' =

The first term of the left-hand side of the equation
corresponds to the advective charge induced by the im-
posed shear at strain rate y. The second term comes from
the cumulative relaxation of stress associated with the 71
processes. The integral form of this equation is a direct
consequence of the long range mechanical relaxation
associated with each T'1 process. As a result, this line-
averaged mechanical analysis cannot allow one to predict
a flow profile, and is in fact strictly equivalent to Eq. (2)
from which it can be deduced by simple integration. In
other words, any velocity profile which obeys the kine-
matic boundary conditions is mechanically admissible.

The understanding of the shear-banding instability
finally comes down to the following question: All lines
bearing in average the same stress, why are T'1 events
unevenly distributed among them? To capture this pro-
cess, we need to go beyond the line-averaged analysis and
examine the spatial structure of stress release associated
with individual T1 events. This is shown in Figs. 4(c) and
4(d) for two different y;; locations. As it appears clearly,
the stress release is very inhomogeneous and anisotropic,
owing to the systematic displacement pattern of the re-
arranging bubbles imposed by the shearing [8,18]. In
particular, lines in the vicinity of the rearranging site
experience large stress modifications. Although the global
effect is a release of the main shear stress, some region-
s(which appear in red) get overcharged. By contrast,
remote lines are homogeneously relaxed.

From this measurement, one may expect that T1 events
do not only relax the global stress but also cumulatively
modify the statistical properties of the frozen stress field.
To investigate this effect, we measure the shear stress
distributions P[o(x, y)] at different distances y from the
shearing wall. We extract from these distributions the
local variances Aca?(y) = ({o(x, y) — &J*). We then com-
pare these profiles obtained from foam structures before
shearing and after full localization. As shown in Fig. 5,
the shearing induces an inhomogeneous modification of
these profiles: a large increase of A occurs in the shear-
band region where many T1 events have occurred, in both
the experiment and the simulation. By contrast, the stress
distributions in lines away from the shear-band display no
modification, or even a small decrease of their variance.
The latter is due to T1’s occurring during the transient
period of charge which do not have a systematic orienta-
tion. We therefore postpone the discussion of this effect.

This result shows that the strain history of the foam
is permanently imprinted in its frozen stress field, and
that such modification can be directly probed through
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FIG. 5. Profile of shear stress variance {{o(x,y) — @]*) in
real (left) and simulated (right) foams. Solid lines correspond
to foams in the fully localized regime. Dashed lines correspond
to freshly prepared samples (no shearing). All data have been
rescaled with the long time limit shear stress. Inset: shear stress
probability distributions at lines y =1 (solid) and y = 10
(dashed), respectively, in the localized regime.

measurements of Acg?. This parameter has a further
important physical meaning: large values of Ao? indicate
that a large fraction of bubbles are highly deformed and
therefore more likely to rearrange upon increasing the
global stress. This parameter thus provides a local mea-
surement of the foam “fragility.”

Based on these observations, a simple scenario for
strain localization in quasistatic shearing can be pro-
posed. Starting with a homogeneous structure, shear
banding develops through a self-amplification process:
T1 events locally weaken the foam structure by increas-
ing its frozen stress disorder. This in turn enhances the
probability for subsequent rearrangements to take place
in neighboring lines. This mechanism spontaneously
leads to the formation of a single shear band in the
material. Within this scheme, we can also qualitatively
understand why shear bands preferentially develop along
the boundaries, even in plane parallel shearing geometry
where the average shear stress is uniform. Indeed, the
presence of a rigid boundary with a no-slip condition
imposes an extra mechanical constraint to the foam in
the vicinity of the walls. This tends to locally enlarge the
local stress distributions.

The experimental and numerical systems studied here
provide an ideal model to study plasticity in disordered
media. It allowed us to access detailed mechanical fea-
tures, from the stress signature associated with a single
plastic event, to the statistical modifications of the frozen
stress field associated with a fully developed shear flow.
We have used these results to propose a simple scenario
for shear localization based on a strain weakening pro-
cess. Most results obtained with this model system should
remain valid to any material provided the existence of (i)
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frozen disorder (no thermal relaxation), (ii) elastic behav-
ior at low deformation, (iii) local discrete plastication
processes. It could therefore serve as a useful test to
more elaborated models of plasticity that involve local
stress relaxations [1,8,19] but do not necessarily address
foam rheology.
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