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Imperfection Effects for Multiple Applications of the Quantum Wavelet Transform
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We study analytically and numerically the effects of various imperfections in a quantum compu-
tation of a simple dynamical model based on the quantum wavelet transform. The results for fidelity
time scales, obtained for a large range of error amplitudes and number of qubits, imply that for static
imperfections the threshold for fault-tolerant quantum computation is decreased by a few orders of
magnitude compared to the case of random errors.
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of quantum gates [10–12]. In fact, explicit quantum cir-
cuits were developed for the most popular discrete WT,

decay with the power law jUn;n0 j 	 1=jn� n j .
Asymptotically for jn� n0j 
 5k we obtain the exponent
The mathematical theory of wavelet transforms (WT)
is currently finding an enormous success in various fields
of science and technology, including treatment of large
databases, data and image compression, signal process-
ing, telecommunications, and many other applications
[1,2]. Wavelets are obtained by translations and dilations
of an original function and they allow one to obtain high
resolutions of microscopic details, both in frequency and
space. The discrete WT can be implemented with high
computational efficiency and provide a powerful tool for
treatment of digital data. It is well accepted that the
Fourier transform and WT are the main instruments for
data treatment, and it has been shown that in many
applications the performance of WT is much higher
compared to the Fourier analysis. The permanent growth
of computer capacity has significantly increased the im-
portance of the above transformations in numerical
applications.

The recent development of quantum information pro-
cessing has shown that computers based on laws of quan-
tum mechanics can perform certain tasks exponentially
faster than any known classical computational algorithms
(see, e.g., [3]). The most known example is the integer
factorization algorithm proposed by Shor [4]. An essen-
tial element of this algorithm is the quantum Fourier
transform (QFT) which can be performed for a vector
of size N � 2nq in O�n2q� quantum gates, in contrast to
O�2nqnq� classical operations [3,4]. Here nq can be viewed
as the number of qubits (two-level quantum systems) of
which a quantum computer is built. Apart from Shor’s
algorithm, the QFT finds a number of various applica-
tions in quantum computation, including the simulation
of quantum chaos models showing rich and complex
dynamics [5–7]. The sensitivity of the QFT to imperfec-
tions was tested in numerical simulations and the time
scales for reliable computation of the algorithm were
established [6–9].

A few years after the discovery of the QFT algorithm,
it has been shown that certain WT can also be imple-
mented on a quantum computer in a polynomial number
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namely, the 4-coefficient Daubechies WT [D�4�] and the
Haar WT, both for pyramidal and packet algorithms [10–
12]. As it happens in classical signal analysis, it is natural
to expect that QWT will find important future applica-
tions for the treatment of quantum databases and quan-
tum data compression. Therefore, it is important to
investigate the stability and the accuracy of QWT in
respect to imperfections. This is especially important
since the functions of the wavelet basis have singularities
in the derivatives (in contrast to analyticity of Fourier
waves) that may enhance the effects of perturbations.

To this aim we introduce a simple model with rich
nontrivial dynamics which is essentially based on mul-
tiple applications of the WT. Its quantum evolution can be
efficiently simulated on a quantum computer, and it is
described by the unitary map for the wave function  :

�  � ÛU � ŴWye�ik�x�
�
2=2ŴWe�iTn

2=2 : (1)

Here the bar marks the value of the wave function after
one map iteration, ŴW is the D�4� WT operator, and the
unitary diagonal operators UT � e�iTn

2=2 and Uk �
e�ik�x�
�

2=2 represent quantum phase rotation in computa-
tional and wavelet basis, respectively. The evolution takes
place in the Hilbert space of N � 2nq states, with
�N=2 � n < N=2 and x � 2
j=N where j � 0; . . . ; N �
1 is the index in the wavelet basis and T, k are dimension-
less parameters. In the case when ŴW is replaced by the
Fourier transform, one obtains the quantum sawtooth
map previously analyzed in Ref. [7]. Thus the model (1)
can be considered as a ‘‘kicked wavelet rotor,’’ where k is
the kick strength in the wavelet basis.

The global properties of the evolution operator (1) are
shown in Figs. 1 and 2 for different values of k. The
density plot of transition matrix elements Un;n0 in
the computational basis is represented in Fig. 1. By in-
creasing k a larger and larger number of states is coupled
by the dynamics, and the complex self-similar struc-
ture of the transitions generated by the WT becomes
evident. On the average, the off-diagonal matrix elements
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FIG. 1 (color online). Density plot of matrix elements jUn;n0 j
2

for the model (1) in the computational basis, for N � 212. Top:
k � 100 (left), k � 1000 (right); bottom is for k � 1000: a
doubled resolution of left upper quarter (left), perturbed op-
erator with static errors � � 5� 10�4, � � 0. Color marks the
density from blue (zero) to red (maximal value).
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� � 4 (Fig. 2). For large values of k the intermediate
scaling law is described by the exponent � � 2, in the
range 1 � jn� n0j � 5k. This decay law for the matrix
elements can be considered as a long range coupling
between states. We note that similar power law regimes
have been analyzed in random matrix models [13,14].
Our numerical analysis shows that there are two regimes
for the level spacing statistics P�s� [15] in the limit of
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FIG. 2. Dependence of averaged matrix elements hjUn;n0 j
2i on

jn� n0j (the average is taken along the diagonal). Data are
shown for N � 215 and k � 1 (full black curve), k � 10 (dash-
dotted curve), k � 100 (dotted curve), and k � 1000 (dashed
curve). The two straight lines are 1=jn� n0j2 and 1=jn� n0j4.
The inset shows the data in semilog scale.
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large N. E.g., for N � 212 the distribution P�s� is given by
the Poisson law for k < 5, while for 5< k � 10 000 it
shows level repulsion and a Poissonian decay for large s
(data not shown). We attribute the rapid appearance of
level repulsion to the slow power law decay of matrix
elements [14].

To implement the evolution (1) on a quantum computer,
we developed an algorithm based on the QWT for the
DaubeschiesD�4� wavelets. The algorithm consists of four
steps: (i) the multiplication by ÛUT , performed in O�n2q�
controlled-phase shift gates as described in [7]; (ii) the
application of ŴW operator, realized by the QWT following
the circuit described in Fig. 10 of [11](see details in [16]);
(iii) the operator ÛUk, implemented in a similar way as for
the step (i); (iv) the inverse WT ŴWy, obtained by reversing
the gates of the step (ii). The heaviest parts of the algo-
rithm are the steps (ii), (iv), since the QWT algorithm
requires multicontrolled operations. To implement them
we used the recipe given in [17] which allows one to
realize a n-controlled gate by O�n� elementary gates
(Toffoli and 1- and 2-qubit gates). To this end an ancilla
qubit is needed, so that we used nq � 1 qubits to simulate
numerically the dynamics of model (1) with N � 2nq

states. The implementation of the wavelet kernel D�4�
2n

requires O�n� multicontrolled gates (n � 2; . . . ; nq), and
since the QWT is composed of O�nq� kernel applications
this leads the total number of elementary gates to scale as
O�n3q� [10–12]. To study the algorithm accuracy we con-
sider two models of imperfections. In the model of ran-
dom noisy gates we replace all ideal gates by imperfect
ones, which are obtained by random unitary rotations by
a small angle �, ��=2 � � � �=2, around the ideal
rotation angle (as in [18]). In the model of static imper-
fections (see [7,19]) all gates are perfect but between gates
 accumulates a phase factor ei� with � �

P
l��l�

z
l �

�l�xl �
x
l�1�. Here �l;�l vary randomly with l � 0; :::; nq,

�l represents static one-qubit energy shifts, ��=2 �
�l � �=2, and �l represents static interqubit couplings
on a circular chain, ��=2 � �l � �=2.

The numerical simulations of the ideal quantum algo-
rithm for the map (1) show that the wave function is
essentially localized on a few states of the computational
basis. This localization is clearly seen from the inverse
participation ratio (IPR) � � 1=

P
nj nj

4 which is a stan-
dard quantity to characterize localization in mesoscopic
systems [15]. It directly provides the number of sites on
which the probability is concentrated. Surprisingly the
localization is present not only for moderate k	 1, but
also when the kick strength is very large k	 1000 (see
Fig. 3). Indeed in both cases � fluctuates near a constant
value �0 � N, even for a very large number of iterations.
We attribute this localization to the structure of the
operator (1): it is banded for moderate k and sparse for
large k (see Fig. 1). For k	 1 the probability shows an
algebraic localization j nj

2 / 1=n4 (Fig. 4). Such an ex-
ponent fully agrees with the scaling law of Fig. 2. For k >
100, the probability is spread over the whole basis (data
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FIG. 3 (color online). Dependence of IPR � on the number of
iterations t, for nq � 12, T � 1:4, k � 1 (top), and k � 1000
(bottom). Initially the probability is concentrated at n � 0. The
black curves show the quantum computation with ideal gates;
the green (light gray) curves show the case with static errors at
� � 10�4; � � 0 and red (gray) curves correspond to the case
with noisy gates at � � 5� 10�4. The data are averaged over
time interval �t � 50.
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not shown), but only a moderate number of narrow peaks
contributes to the IPR value (see Fig. 3). This behavior is
consistent with the fact that the P�s� never reaches a
Wigner-Dyson regime (see discussion above). On the
contrary, the spectral properties of the sawtooth map
[7,20] are described by the random matrix theory for k	
1000, T 	 1, and N � 212.

The effect of imperfections in the quantum gates is
shown in Figs. 3 and 4,. The results clearly show that the
localization is destroyed by noisy gates imperfections
−1000 0 1000

n

10
−12

10
−9

10
−6

10
−3

10
0

1 10 100 1000
n

10
−17

10
−12

10
−7

10
−2

|ψ
n|2

FIG. 4. Probability distribution j nj
2 in the computational

basis for the parameters of Fig. 3 (top) at k � 1; t � 104: full
curve is the quantum computation with ideal gates, gray curve
shows data for noisy gates with � � 5� 10�4. The straight line
displays the scaling law 1=n4. The inset shows the same data in
semilogarithmic scale.
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which lead to an approximately linear growth of � with
t. For static imperfections � shows modified bounded
oscillations. The probability distribution in Fig. 4 shows
the appearance of a plateau with pronounced peaks lo-
cated approximately at n � N=2m, m � 1; 2; 3 . . . . We
attribute the appearance of these peaks to the pyramidal
structure of the algorithm, which in the presence of
imperfections produces stronger errors at the above values
of n. For static imperfections the plateau level remains
bounded in time t while for noisy gates it increases with t
and for very large t the probability becomes homogene-
ously distributed over the computational basis.

The qualitative difference between two types of im-
perfections becomes clear from the analysis of the be-
havior of the fidelity, defined as f�t� � jh ��t�j �t�ij

2.
Here  �t� is the wave function obtained with ideal gates,
while  ��t� is the result of the quantum computation with
imperfections of amplitude �. We determine the time
scale tf for accurate computation by fixing a threshold
for the fidelity as f�tf� � 0:9. In this way it is possible to
find the dependence of tf on the system parameters. Our
numerical data are presented in Fig. 5. They show that for
noisy gates tf is described by the relation

tf � C=��2ng�; Ng � C=�2; (2)

where ng is the number of gates per map iteration, Ng �
ngtf is the total number of gates, andC � 5 is a numerical
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FIG. 5. Panel (a) shows the fidelity decay in time at k � 1,
nq � 12 for static imperfections (� � 10�4; � � 0, dashed
curve) and noisy gates (� � 5� 10�4, full curve). Panel (b)
shows the dependence of time scale tf on the imperfection
strength � for nq � 8 (ng � 5237) for noisy gates (diamonds)
and static imperfections (triangles at � � 0; circles at � � �,
for clarity data are shifted in � axis by a factor 10 to the left).
Panel (c) gives the dependence of the total number of gates Ng
on ~�� for nq � 6; 8; 10. For noisy gates (diamonds) ~�� � � and for
static imperfections (triangles) ~�� � � ������nq

p . Open (full) symbols
are data for k � 1�k � 1000�. The full and dashed lines in
panels (b),(c) show the relations (2) and (3), respectively.
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constant. The physical origin for this scaling is related to
the fact that after each gate an amount of probability of
the order of �2 is transferred from the ideal state to all
other states. This leads to an exponential decay of the
fidelity f�t� � exp��A�2ngt�, where A is a constant [see
Fig. 5(a)]. This gives the scaling (2), which was also found
in other algorithms with noisy gates [7,9,18].

For the model with static imperfections the scaling is

tf � D=��ngn
1=2
q �; Ng � D=��n1=2q �; (3)

where D is a numerical constant (D � 4:5, at � � 0 and
D � 2:1 at � � �). This time scale is significantly
smaller than the one for noisy gates. Physically, this
happens due to the coherent action of static imperfections,
which lead to effective Rabi oscillations proportional to
cos��ngt� for each qubit. For nq qubits this gives f�t� /
�cos��ngt��nq and for small �we obtain a Gaussian drop of
the fidelity f�t� 	 exp��nq��ngt�2�, in agreement with
our numerical results [see Fig. 5(a)]. This leads to the
scaling (3), which is confirmed by the data in Fig. 5. The
effects of static imperfections are dominant for all range
of imperfection strengths studied. We note that similar
scalings were discussed and numerically demonstrated in
other quantum algorithms with noisy gates [9,18] and
static imperfections [7](see also [21]). This shows that
such scaling laws are generic and are not sensitive to the
singularities in the derivatives of the wavelets. The uni-
versality of the above relations (2) and (3) is also con-
firmed by the fact that the structure of the QWT is rather
different from the QFT algorithm, e.g., the number of
elementary quantum gates scales as O�n3q� for the QWT,
in contrast to O�n2q� for the QFT. These relations deter-
mine the total number of gates Ng � tfng during which
the quantum computation is reliable. Similar scalings for
Ng should also be valid for other quantum algorithms,
e.g., Grover’s and Shor’s algorithms.

The above relations (2) and (3) are important for the
quantum error correction codes and the fault-tolerant
quantum computation threshold (see [3,22], and referen-
ces therein). Indeed the accuracy border for large scale
quantum computation is obtained in the assumptions of
random noisy errors and gives a threshold � < �r 	 10�2.
This approach intrinsically uses the fact that for noisy
gates the fidelity remains close to 1 for a number of gates
Ng � C=�2r [see (2)]. In the case of static imperfections it
is natural to assume that this number of gates should
remain approximately the same to allow large scale com-
putation on a quantum computer with nq qubits.
Therefore, for static imperfections Eqs. (2) and (3) give
the accuracy border �s:

�s � D�2r=�Cn
1=2
q �: (4)

This important relation gives a significant decrease of the
threshold for the case of static imperfections [23]. For the
parameters of our model at nq � 10 we obtain that for
the noisy error rate pr � �2r � 10�4 the rate induced by
257902-4
static imperfections should be less than ps � �2s � 10�9.
This result shows that new strategies of quantum error
correction codes should be developed to significantly
suppress phase shifts induced by static imperfections.
The spin echo techniques used in NMR [3] may play
here an important role.
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