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We study the � � 1=3 quantum Hall state in the presence of random disorder. We calculate the
topologically invariant Chern number, which is the only quantity known at present to distinguish
unambiguously between insulating and current carrying states in an interacting system. The mobility
gap can be determined numerically this way and is found to agree with experimental value semi-
quantitatively. As the disorder strength increases towards a critical value, both the mobility gap and
plateau width narrow continuously and ultimately collapse, leading to an insulating phase.
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such as the disorder configuration.) Such a quantum phase
transition has been studied for only several noninteract-

higher energy extended excitations from the low energy
FQHE states, can be determined from the distribution of
Two-dimensional electron systems in a perpendicular
magnetic field have been the focus of both theoretical and
experimental attention for the past two decades. Such
systems, if made sufficiently pure and taken to low
enough temperatures, exhibit primarily the fractional
quantum Hall effect (FQHE) [1–3]. While the pure sys-
tems, especially for the strongest FQHE, are fairly well
understood, there is essentially no quantitative under-
standing of the role of random disorder. The importance
of disorder, however, is underscored by the hallmark
FQHE plateaus, which cannot occur in a translationally
invariant system. On the other hand, when the disorder
strength becomes comparable to the strength of interac-
tions between electrons, the FQHE will eventually be
destroyed. In this Letter, we report on finite-size studies
of the effects of random disorder on the 1=3 FQHE.

The usual numerically calculated quantities such as the
energy spectrum, wave functions, and the density-density
correlation functions, while useful in studies of isolated
impurities [4,5], provide little or no understanding of
transport properties. A more appropriate approach is to
obtain the quantum Hall conductance by calculating to-
pologically invariant Chern integers [6–8] in systems
with periodic boundary conditions (or torus geometry),
in the presence of random disorder. Physically the Chern
integers are the boundary condition averaged Hall con-
ductance of the system in units of e2=h. In the case of the
integer quantum Hall effect (IQHE), the Chern numbers
for the ground states have fixed nonzero integer values,
while a ‘‘metallic’’ or critical state that separates two
neighboring IQHE states gives an intrinsically fluctuating
Chern number [8]. (It takes on different integer values in
response to slight changes of the external parameters,
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ing models [8], in which only the Chern number for
single-particle states needs to be calculated.

The situation is very different in the case of FQHE.
Because of the topological and many-body nature of the
problem, in the FQHE system at filling factor � �
nh=eB � p=q (B is the magnetic field and n the areal
density), there exists a manifold of q nearly degenerate
low energy states on the torus, whose energy differences
disappear in the thermodynamic limit (Ref. [9] and see
below). The quantization of the Hall conductance cannot
be tied, in a physically meaningful way, to any particular
one of the q ground states. For example, in the absence of
disorder (in which case the degeneracy is exact), when an
external flux quanta is inserted adiabatically [6,10,11] in a
region inaccessible to the electrons, the states within a
given manifold evolve into each other. In the presence of
disorder, the Chern number of the individual states fluc-
tuates while the sum of the Chern number of all the states
turns out to be p and robust. As a consequence, we may
regard the total Chern number p to be shared by the q
degenerate states, which results in fractionally quantized
Hall conductance 	H � pe2=qh for the system.

Based on this picture, we have developed a numerical
method for studying the topological Chern number of the
ground state and low energy excited states for an inter-
acting system. We will show that the presence of disorder
leads to several interesting and important results for 1=3
FQHE: (i) Aweak random disorder lifts the degeneracy of
the ground state for a finite number of electrons. However,
the level spacings between the lowest three states decrease
monotonically with the increase of electron number, in-
dicating the recovery of the degeneracy in the thermody-
namic limit. (ii) The mobility gap, which separates the
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the Chern number of the many-body states. This is the
only way to distinguish unambiguously between insulat-
ing and current carrying states in an interacting system.
(iii) In general the mobility gap, determined this way,
will be different from the spectrum gap (which separates
the lowest three states from other higher states). It is the
mobility gap that should be compared with the experi-
mentally obtained activation energies. (iv) There exists
a critical disorder strength W � Wc � 0:2e2=� for
Gaussian white noise potential, which marks a transition
from the FQHE to insulator. (v) The physics of the de-
struction of the FQHE can be described as the continuous
collapse of the mobility gap; the closing of the mobility
gap and the destruction of the Hall conductance quanti-
zation occur at the same time.

We consider a two-dimensional interacting electron
system in an L1 � L2 square cell with twisted boundary
conditions: T�Lj���r� � ei�j��r�, where T�Lj� is the
magnetic translation operator and j � 1; 2 represents the
x and y directions, respectively. Calculating the Hall
conductance 	H directly from a Kubo formula would
require a knowledge of all the many-body eigenstates.
This proves impractical for systems with three electrons
or larger. As first realized by Thouless and co-workers [6],
a topological property of the wave function [10], known
as the first Chern number, can be used to calculate the
boundary condition averaged 	H. The importance of
Chern numbers, however, goes beyond obtaining 	H. It
appears to be the only quantity that distinguishes between
insulating and current carrying states [7] in an interacting
system. Because we are dealing with many-body wave
functions, other simpler numerical methods (such as in-
verse participation ratio and Thouless numbers) used for
determining the localization of the single-particle wave
functions have no obvious extension here. The boundary-
phase averaged Hall conductance for the kth many-body
eigenstate can be written as 	kH � C�k�e2=h, where

C�k� �
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d�j
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�
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������� k
��
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and the closed path integral is along the boundary of a
unit cell 0 � �1; �2 � 2� (summation over j is implied).
C�k� is exactly the Berry phase (in units of 2�) accumu-
lated for such a state when the boundary phase evolves
along the closed path. To determine the Chern number
uniquely [8], we separate the boundary-phase space into
approximately 36–100 mesh points and get the sum of the
Berry phases from each mesh. In cases where there are
near-level crossings, the integration contour has to be
chosen reasonably close to these points. This determines
the size of the mesh, at least locally. For the mesh sizes we
chose, we found the Chern numbers had converged and
did not change by further reducing the mesh size.

In the presence of a strong magnetic field, one can
project the Hamiltonian onto the partially filled, lowest
Landau level. The projected Hamiltonian in the presence
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of both Coulomb interaction and disorder [12] can be
written as

H �
1

A

X
i<j

X
q

e�q
2=2V�q�eiq��Ri�Rj�

	
X
i

X
q

e�q
2=4Uqeiq�Ri ; (2)

where Ri is the guiding center coordinate of the ith
electron, V�q� � 2�e2=�q is the Coulomb potential, Uq
is the impurity potential with the wave vector q, and A is
the area of the system. We set the magnetic length ‘ � 1
and e2=�‘ � 1 for convenience. The Gaussian white noise
potential we use is generated according to the correlation
relation in q-space hUqUq0 i � �W2=A�"q;�q0 , which cor-
responds to hU�r�U�r0�i � W2"�r�r0� in real space,
where W is the strength of the disorder. We consider the
case of � � Ne=N$ � 1=3, where Ne and N$ are the
number of electrons and flux quanta. We obtain the exact
low energy eigenvalues and eigenstates using the Lanczos
method for systems up to eight electrons. We then calcu-
late the Chern numbers using Eq. (1).

Independent of boundary conditions, we find that, for
weak disorder, low energy states are separated into
groups. The lowest group has three closely spaced states.
This property comes from the threefold center of mass
degeneracy of the pure system at � � 1=3 and is shared by
the entire spectrum. For finite sizes, there is a finite level
spacing between the lowest three states, which is much
smaller than the energy difference between the third and
the fourth states. The latter is the low energy spectrum
gap denoted as Es. At W � 0:06, we have Es � 0:04
0:002 (averaged over 100–2000 disorder configurations),
which is size independent for Ne � 5–8. It remains finite
for weak W until W is further increased to W � 0:15, at
which point Es becomes too small and its value in the
thermodynamic limit cannot be extrapolated from the
sizes accessible to our approach.

On the other hand, the level spacings between the low-
est three states depend strongly on Ne. They are expected
to vanish exponentially as the linear dimension of the
system [9]. This can be seen clearly in Fig. 1, where we
show a semilog plot of the ‘‘bandwidth’’ Eb vs

������
Ne

p
for

three different disorder strengths. It is apparent that Eb
drops to zero for large Ne, a direct consequence of the
topological order in the ground state. This is in contrast to
the usual effect of disorder in the IQHE, where the
degeneracy of all the states in a Landau level, not being
a topological property, will be lifted by the perturbation
of arbitrarily weak disorder.

In the presence of weak disorder (W < 0:12), we find
that the total Chern number carried by the lowest level is
always 1, for Ne � 3–8 and thousands of disorder config-
urations. Note that the vanishing Eb and the existence of a
finite spectrum gap Es, at relatively weak W, is a direct
manifestation of the � � 1=3 FQHE; since the lowest
three states become degenerate in the thermodynamic
256802-2
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FIG. 1. A semilog plot of the bandwidth Eb of the first level
that consists of three closely spaced lowest energy states as a
function of the square root of the electron number, at three
relatively weak disorder strengths W � 0:01, 0:06, and 0:12.
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limit, the Hall conductance carried by the ground state is
1=3 of e2=h. However, this is not unique to the ground
state, and we find that even the low lying excited states
above the spectrum gap have similar properties. Namely,
each three states carry total Chern number C � 1. At
W � 0:01, the lowest two groups have C � 1 for all the
disorder configurations we have sampled. In Fig. 2 we plot
for the first five groups, P�C�, for W � 0:06, vs C. P�C� is
the probability that the total group Chern number isC.We
have averaged over 2000, 1000, and 500 disorder config-
urations for Ne � 5; 6, and 7, respectively. As seen in
Fig. 2, P�1� � 1 for the first group (Ng � 1), and P�C� �
0 for C � 1. This means all disorder configurations have
C � 1, which corresponds to the 1=3 FQHE because each
state carries a definite average Hall conductance of e2=3h.
For Ng � 2, both P�0� and P�2� are nonzero, indicating
that a small number of configurations have C � 0 or 2. As
a result, P�1� is reduced to 0:9, 0:91, and 0:92 for Ne � 5,
6, and 7. The increase of P�1� with Ne indicates that P�1�
may recover to 1 at large Ne. For the Ng � 3 case, P�1� is
significantly reduced to about 0.7; it behaves nonmono-
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FIG. 2. The probability distribution P�C� of total Chern
number C, for the lowest five groups of states. The energy of
the states increases towards the right.
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tonically as a function of Ne. This results from the
coexistence of three different Chern numbers in the ther-
modynamic limit, which characterizes the delocalization
of quasiparticle excitations. Namely, these excitations
carry nonzero Chern numbers which are extended in
real space. For Ng > 3, P�1� is further reduced and seems
to saturate at a value near 0.5.

We may regard the fluctuation of the Chern number to
be an indication of the degree of delocalization. In anal-
ogy to the physics of noninteracting systems [8], we
define Pext � 1� P�1� to be the likelihood of the break-
down of the quantization of the Hall conductance and
thus a measure of the delocalization of the charged ex-
citations. In the FQHE plateau regime, Pext goes to zero as
a result of the localization or nondissipative nature of the
state. Here nonzero Pext occurs as we go to higher energy
states (Ng � 3). The energy that separates these two kinds
of states is called the mobility edge, where Pext has a large
increase, which probably becomes a finite jump in the
thermodynamic limit. For W � 0:06, we find that, from
Ng � 2 to 3, Pext has the largest increase, which puts the
Ng � 3 group at the mobility edge. Measuring the energy
at the mobility edge relative to the energy of the lowest
level, we get the mobility gap Em for Ne � 4–8, which is
Ne dependent. For W � 0:06, we determine the mobility
gap by extrapolating the finite-size data to the thermody-
namic limit. For weaker disorder, the sizes that can be
treated are not sufficient to produce a meaningful ex-
trapolation to N ! 1.

The extrapolated Em vs W is shown in Fig. 3(a). In the
inset we plot Em vs 1=Ne forW � 0:17, which can be best
fit to Em � 0:10=Ne 	 0:005; thus we obtain Em �
0:005 0:003 in the thermodynamic limit. We see that
at W � 0:17 such a gap is strongly reduced, consistent
with the drop of the spectrum gap for similar W, signal-
ing the FQHE is on the verge of being destroyed by
disorder.

The energy gap � in the excitation spectrum of the
correlated many-body ground state can be extracted ex-
perimentally from the temperature dependence of the
magnetoresistivity, ,xx / exp���=2kBT�, where �=2 is
the activation energy and kB the Boltzmann’s constant
[13,14]. Boebinger et al. [13] systematically studied the
activation energy for � � 1=3, 2=3, 4=3, and 5=3 and its
dependence on sample mobility - (an indication of dis-
order) in GaAs-AlxGa1�xAs. For a class of high-mobility
(at that time) samples, they found that � ’ 0:049e2=�l�
6 K. The mobility (-) dependence of � can then be
extracted from the known dependence of - on the elec-
tron density n of these samples, since n determines
the magnetic field B (or l) at the 1=3 family of fillings.
For semiquantitative comparison, we use a typical depen-
dence, - � -0�n=n0�1:5, where -0 � 600 000 cm2=V s
and n0 � 1:5� 1011 cm�2, as extracted from Fig. 1 of
Ref. [13]. Figure 3(b) compares this empirical formula of
��-� with the mobility gap we obtained in our calcula-
tion. In the latter, we assume that both the (zero field)
256802-3
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FIG. 4. The relative decrease of the Hall conductance of the
lowest level over the change of disorder strength �W is plotted
as a function of W for Ne � 5, 6, 7, and 8.
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FIG. 3 (color). (a) The extrapolated mobility gap Em as a
function of W. Inset shows Em at W � 0:17 for Ne � 4–8
electrons. The dashed line indicates Em can be extrapolated
to 0.005 at 1=Ne ! 0. The blue dot at W � 0 is the creation
energy for a quasiparticle-quasihole pair at infinite separation,
extrapolated from pure systems with up to Ne � 10.
(b) Dependence of Em on mobility -. The dashed line is
converted from a fit to experimental data (taken from
Ref. [13]). Here, we use an empirical mobility-density relation
as well as a mobility-disorder relation in the Born approxima-
tion (see text for detail).
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mobility and the (high field) mobility gap are dominated
by short-range scatterers (appropriate for these so-called
high-mobility samples) and, in the Born approximation,
- � e �h3=�m�2W2�. Here, we do not include the effects of
layer thickness and Landau level mixing which, never-
theless, exist in experimental samples and are known to
reduce the gap by as much as a factor of 2 [14,15] (for zero
or very weak disorder).

As we further increaseW, the FQHE becomes unstable.
This can be discerned by following the evolution of the
Chern number of the lowest level and 	H averaged over
the lowest three states. For example, for Ne � 6, at W �
0:14, we have	H � e2=3h; it drops to 0:924e2=3h atW �
0:17. At larger W, we find a very strong enhancement of
the fluctuation in the Chern number and, correspondingly,
a rapid reduction of 	H. Similar results are obtained for
Ne � 8. As shown in Fig. 4, ��	H=�W has its largest
value near Wc � 0:22 0:025 for all Ne � 5–8, which
determines the critical disorder for the � � 1=3 state
plateau to insulator transition.

We have also studied the gap for filling factors slightly
away from 1=3. At weak W, the � � 1=3 FQHE plateau
has a finite width due to the nonzero mobility gap that
survives to fillings slightly below and above 1=3. The
width of the plateau and the mobility gap at 1=3 both
decrease with the increase of the disorder strength, and
they are expected to vanish at the same disorder strength.
Our results are consistent with this expectation.
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