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Quantum Shuttle in Phase Space
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We present a quantum theory of the shuttle instability in electronic transport through a nanostructure
with a mechanical degree of freedom. A phase space formulation in terms of theWigner function allows
us to identify a crossover from the tunneling to the shuttling regime, thus extending the previously
found classical results to the quantum domain. Further, a new dynamical regime is discovered, where
the shuttling is driven exclusively by the quantum noise.

DOI: 10.1103/PhysRevLett.90.256801 PACS numbers: 73.23.Hk, 05.60.Gg, 85.85.+j
model supporting the shuttling transition in the classical sured with respect to the equilibrium chemical potential
Advances in microfabrication technology are pushing
today’s microelectromechanical systems towards the
nanometer regime, and the emerging new technology of
nanoelectromechanical systems (NEMS) is expected to
play an important role in the future. The ubiquitous
quantum mechanical effects affecting the performance
of these devices present many theoretical challenges, only
a few of which have so far been addressed in the litera-
ture. The purpose of this Letter is to present a fully
quantum theory for an electromechanical instability in
a generic NEMS device, the single-electron shuttle first
studied by Gorelik et al. [1].

This device consists of a movable single-electron tran-
sistor (SET) and exhibits an electromechanical instabil-
ity from the standard tunneling regime to a new regime in
which the SEToscillates and carries an integer number of
electrons per a cycle (shuttle regime). Since the original
suggestion [1], there has been increasing interest in the
shuttle phenomenon [2–10]: e.g., by incorporating the
shot noise due to the electron transfer [2], gate effects
[3], the coherence effects in the electronic subsystem [4],
and strong dissipation of the oscillator energy [5]. Only
very recently the quantum mechanical treatment of the
oscillations in various modifications of the shuttle setup
has been considered [6,8].

The classical theory of shuttle transport has been used
[3,4] to describe the experiments on C60 single-electron
transistor [11], where the oscillations of the center of mass
of the molecule were found to be important. However,
also explanations based on incoherent phonon assisted
tunneling theory, which do not take into account the
correlation between the coherent oscillator motion and
the electron transfer, seem to yield reasonable predictions
for the I-V curves [12,13].

Therefore, a fully coherent quantum mechanical treat-
ment of the oscillator, which does take into account
possible correlations and which would, in principle, allow
one to join the two approaches into a unified framework,
is a most desirable theoretical task. In this study we
present an attempt for such a treatment for the simplest
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regime. A complementary study to ours already exists
[10] which uses a similar model, albeit without any
mechanical damping. However, the quasiclassical expan-
sion of the tunneling term used in that work does not give
access to the purely quantum phenomena discussed below.

We demonstrate that the characteristic strong correla-
tion between the oscillator motion and the electron trans-
fer persists even in the quantum regime. The noise
generated by various sources (shot and thermal, both
having quantum components) is found to be very impor-
tant for the phenomenon. Not only does it smear the
classical transition found in [1] into a crossover with a
considerably shifted position in parameter space com-
pared to the classical ‘‘mean field’’ study [1,4] but the
quantum component of the shot noise also generates the
shuttle instability even in the classically stable region
with zero electric field.

Using the generalized master equation approach sug-
gested in [6] we study a simple model motivated by
several previous studies [1,4,10,13]. Namely, we consider
an oscillating nanoscopic grain with only one electronic
level (strict Coulomb blockade regime) coupled to two
leads. The oscillator degree of freedom is treated fully
quantum mechanically in our approach. We also account
for the oscillator damping, the thermal noise due to the
oscillator-bath coupling, and the shot noise due to the
quantized electron transfer.

The Hamiltonian of the model reads

H � Hosc � �0c
y
0c0 �

X
k;��L;R

��k� ����c
y
k�ck� �HB

� eExcy0c0 �
X

k;��L;R

�Tk�0�x�c
y
k�c0 � h:c:� �Hint;

(1)

where the first three terms describe the free evolution of a
linear harmonic oscillator Hosc �

p2

2m� m!2x2
2 , the single

electronic level on the grain, and the two noninteracting
leads symmetrically biased by voltage �V (i.e., �L � eV

2 ,
�R � � eV

2 with e; V > 0; all electronic energies are mea-
2003 The American Physical Society 256801-1



P H Y S I C A L R E V I E W L E T T E R S week ending
27 JUNE 2003VOLUME 90, NUMBER 25
of the leads), respectively. The term HB describes a ge-
neric Ohmic heat bath [14]. The first interaction term
accounts for the electrostatic coupling between the posi-
tion of the grain and the occupation of the grain elec-
tronic level; E is the electric field caused by the bias
applied between the leads and/or gate voltage [3,13].
This electric field causes a shift of the charged oscillator
equilibrium by d � eE

m!2 . The second term is the coupling
of the leads to the single electronic state on the grain with
oscillator-dependent hopping amplitudes TkL0�x� �
tL exp��

x
��, TkR0�x� � tR exp�

x
�� where � is the electron

tunneling length. The last term Hint describes the cou-
pling of the heat bath to the oscillator which is linear in
the oscillator coordinate [14]. The net effect of this cou-
pling is the oscillator mechanical damping characterized
by a constant � and the Langevin random force that the
bath exerts on the oscillator and which depends on the
temperature of the bath T.

By projecting out the leads and the thermal bath
we arrive at a Markovian generalized master equation
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(GME) for the density matrix ��t� of the system com-
posed of the grain and the harmonic oscillator. Since the
electronic transfer rate in the shuttling regime is compa-
rable with the frequency of the oscillations, we employed
the singular coupling limit [15,16] appropriate for rapidly
decaying systems. This approximation is valid for bias
much larger than any energy scale of the system, i.e.,
eV 	 �h!; �0. Moreover, we also assume eV 	 kBT
which is reasonable in the present physical context.
The mechanical damping due to the heat bath is, on the
other hand, treated within the standard weak coupling
theory [17].

Our GME reads

_���t� � L��t� � �Lcoh �Ldriv �Ldamp���t� (2)

with

L coh� �
1

i �h
�Hosc � �0c

y
0c0 � eExcy0c0; ��; (3)
L driv� � �
�L

2
�c0c

y
0e

�2x=��� 2cy0e
�x=��e�x=�c0 � �e�2x=�c0c

y
0 �

�
�R

2
�cy0c0e

2x=��� 2c0e
x=��ex=�cy0 � �e2x=�cy0c0�; (4)
L damp� � �
i�
2 �h

�x; fp; �g� �
�m!
�h

� �NN � 1=2��x; �x; ���:

(5)

Here �; � and f; g denote the commutator and the anticom-
mutator, respectively, and �NN � �exp� �h!

kBT
� � 1��1 is the

mean oscillator occupation at the bath temperature.
The first term in Eq. (2) is the free coherent evolution

of the oscillator and the grain level while the second one
describes the transfer of electrons via the oscillator-
position-dependent tunnel junctions from the left reser-
voir to the grain level (the term with �L) and from the
level to the right reservoir (the term with �R). The oppo-
site processes can be neglected due to the assumption
eV 	 �h!; �0; kBT. The transfer rates equal �L;R �
2�
�h jtL;Rj2DL;R with the constant densities of states of the

leads DL;R. The third term accounts for the interaction of
the oscillator with the heat bath. Translational invariance
of the damping, positivity of the density matrix, and
relaxation towards canonical equilibrium cannot be
achieved simultaneously with any Markovian damping
kernel, and one has to sacrifice at least one of these
properties. The most physical choice is to relax the pos-
itivity [17]. We checked the magnitude of breaking of the
positivity in our calculations and found it irrelevant.
Moreover, it occurs only for large values of � out of the
shuttling regime.

It can be shown that the electronic off-diagonal ele-
ments of the density matrix are decoupled from the
diagonal ones and, moreover, decay to zero in the sta-
tionary state. Therefore, it is sufficient to consider only
the electronic diagonal elements: �00�t� � h0 j��t�j0i and
�11�t� � h1 j��t�j1i, where j1i � cy0 j0i. These objects are
still full density matrices in the oscillator space and
satisfy
_��00�t� �
1

i �h
�Hosc; �00�t�� �

�L

2
�e�2x=��00�t� � �00�t�e�2x=�� � �Rex=��11�t�ex=� �Ldamp �00�t�;

_��11�t� �
1

i �h
�Hosc � eEx;�11�t�� � �Le�x=��00�t�e�x=� �

�R

2
�e2x=��11�t� � �11�t�e2x=�� �Ldamp �11�t�:

(6)

From the continuity equation for the electronic charge we

may deduce the following formula for the stationary
current through the grain (flowing from the left to the
right lead):

Istat � e�LTrosc�e�2x=��stat
00 � � e�RTrosc�e2x=��stat

11 �: (7)

The trace is carried out over the oscillator basis and
�stat
nn � limt!1�nn�t�.
We solved numerically the stationary version of the
above Eqs. (6): 0 �

P
2N2

l�1 Lkl�
stat
l where the column vector

�stat
l consists of the matrix elements of �stat

00 ; �
stat
11 and

the (super)matrix Lkl of the dimension 2N2 � 2N2 con-
tains the appropriate coefficients of the linear system (6).
The density matrix was represented in the harmonic
oscillator basis which was truncated by taking up to N �
100 lowest states which yields satisfactory numerical
256801-2
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convergence in our parameters range. We determined the
unique (for �R � �L � � � 0) null vector of the super-
matrix L by using the Arnoldi iteration [18].

Our approach differs from the one used in [6] where the
explicit time integration scheme of the time-dependent
equation analogous to (6) was used to determine the
stationary density matrix. We applied our method to the
model of [6] and recovered the I-V curve results reported
there. Using the phase space analysis detailed below we
fully confirmed the shuttling interpretation based on the
indirect evidence from changes of the I-V curves with
changing parameters.

The I-V curve (or other dependencies of the current on
some parameter) alone yields only an indirect evidence of
shuttling and may actually not be decisive whether the
system is shuttling or not (see, e.g., [12] versus [4]).
Therefore, it is preferable to consider quantities which
depend also on the state of the oscillator. An excellent
visualization tool [17] for the description of the joint
electronic and oscillator properties are the Wigner func-
tions (n � 0; 1)

Wnn�X;P� �
Z 1

�1

dy
2� �h

�
X�

y
2

��������stat
nn

�������X�
y
2

�
exp

�
i
Py
�h

�

(8)

yielding the charge-resolved quasiprobability distribu-
tions of the oscillator in the phase space. These functions
provide us with a clear evidence of the transition from the
FIG. 1 (color online). Phase space picture of the tunneling-to
distribution functions for the discharged (W00), charged (W11), and
axis–coordinate in units of x0 �

														
�h=m!

p
, vertical axis–momentu

d � 0:5x0, � � 0:05 �h!. The values of � are in units of �h!. The W
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incoherent tunneling to the coherent quasiclassical shut-
tling behavior with decreasing damping coefficient.

Our focus is in the quantum effects on the shuttling
transition and, in particular, whether there is any tran-
sition in the quantum regime at all. Therefore, we work in
the strictly quantum regime where the tunneling length is
comparable to the zero uncertainty of the oscillator, ��
x0 �

														
�h=m!

p
, and where only a relatively small number

of oscillator states is excited.
In Fig. 1 we depict the Wigner functions W00, W11, and

Wtot � W00 �W11 showing the crossover from the tun-
neling to the shuttling regime with decreasing damping.
In the tunneling regime (large �) the oscillator is located
around the origin (or shifted origin when charged) with
no particular correlation between its charge state and
momentum (Wigner functions are centered around the
origin with some ‘‘quantum fuzziness’’). This is consis-
tent with the quantum incoherent tunneling picture. On
the other hand, in the shuttling regime (small �) the
oscillator orbits almost classically (ringlike shape of
Wtot with a hole around the origin), shuttles the charge
on its way from the left to the right lead, and returns
empty back (half-moon shapes of W00, W11). The corre-
lation between the charge state and the mechanical
motion is very strong. In the crossover region (medium
�) we can see that both regimes of transport are contri-
buting additively (ringlike shape plus an incoherent peak
around the origin of Wtot). The classical mean field sharp
transition of [1] between the tunneling and the shuttling
regime is smeared into a crossover due to the noise. Also
-shuttling crossover. The respective rows show the Wigner
both (Wtot) states of the oscillator in the phase space (horizontal
m in �h=x0). The values of the parameters are � � x0, T � 0,
igner functions are normalized within each column.
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FIG. 2 (color online). I-� curve. The � dependence of the
stationary current through the grain for different transfer rates
and electric fields. Their values are d � 0:5x0, � � 0:05 �h!
(pluses; corresponds to Fig. 1); d � 0:5x0, � � 0:01 �h!
(circles); d � 0:0, � � 0:05 �h! (asterisks); d � 0:0, � �
0:01 �h (crosses). Other parameters are � � x0, T � 0. The
current is in units of e! while � is in �h!.
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the position of the crossover is substantially shifted with
respect to the classical values (�cross is �5 times larger
than the classical value) which is attributed to the deeply
quantum (and therefore noisy) regime. The classical pic-
ture is expected to emerge in the quasiclassical limit
d; � 	 x0.

In Fig. 2 we plot the � dependence of the stationary
current through the grain for different transfer rates �
and electric fields (measured in d). For the two curves
with d � 0 we can see the rise of the current in the
crossover region from the tunneling-limited values pro-
portional to � to shuttling-mediated quantized value of
one shuttled electron per each cycle (1=2� � 0:16 in our
units; independent of �) in agreement with the classical
results. More surprisingly, also the results for the case of
zero electric field d � 0 show clear signs of shuttling
crossover in the I-� curve for small enough mechanical
damping. Classically there is no shuttling transition for
d � 0 regardless of the other parameters’ values [4], and
the I-� curve is constant. Therefore, this shuttling must be
driven purely by the quantum component of the shot noise
(proportional to �h). Also the phase space pictures of this
regime reveal the onset of shuttling transport.

Finally, we comment on the effect of the temperature.
For a nonzero temperature the shuttling transition within
our model is facilitated by the increase of the mechanical
noise driving the transition. The deteriorating effect of
the temperature on the transition is not included in the
model due to the high bias assumption. The development
of the theory for a finite bias is under way.

To summarize, we have presented a quantum theory
of the shuttling transition in fully developed Coulomb
256801-4
blockade regime. Using the Wigner functions as a phase
space visualization method we have exhibited a clear
crossover from the tunneling to the shuttling regime of
the transport as a function of the mechanical damping
parameter. The effect of noise on the transition in the
deeply quantum regime (�� x0 �

														
�h=m!

p
) is pro-

nounced and can even trigger the transition in the classi-
cally stable regime with the zero electric field.
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