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Brillouin Study of the Quantization of Acoustic Modes in Nanospheres
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The vibrational modes in three-dimensional ordered arrays of unembedded SiO2 nanospheres have
been studied by Brillouin light scattering. Multiple distinct Brillouin peaks are observed whose
frequencies are found to be inversely proportional to the diameter (� 200–340 nm) of the nanospheres,
in agreement with Lamb’s theory. This is the first Brillouin observation of acoustic mode quantization in
a nanoparticle arising from spatial confinement. The distinct spectral peaks measured afford an
unambiguous assignment of seven surface and inner acoustic modes. Interestingly, the relative
intensities and polarization dependence of the Brillouin spectrum do not agree with the predictions
made for Raman scattering.
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shape nor were they monodisperse. These features gave microscope (SEM) images (Fig. 1) reveal that each
Low-dimensional systems exhibit interesting physical
properties arising from spatial confinement effects, one
of which is that their continuous energy spectrum is
changed into a discrete one. In semiconductor quantum
dots, electronic wave functions experience quantum
confinement due to the dot boundary, inducing quantiza-
tion of bulk electronic bands such that the quantum dots
have electronic transitions that shift to higher energies
with decreasing dot size [1]. In magnetic nanowires,
bulk spin wave quantization has been observed using
Brillouin light scattering [2]. In this study of nickel
nanowire arrays, discrete modes which are a consequence
of the quantization of bulk spin waves arising from con-
finement by the small cross section of the nanowires were
observed.

Acoustic wave quantization in nanoparticles has been
investigated by several groups using low-frequency
Raman scattering [3–12]. The nanoparticles, ranging in
size from a few to tens of nanometers, are in all cases
embedded in a matrix. Results were analyzed based on
the theory of acoustic modes confined in a homogeneous
elastic sphere with a free surface, first formulated by
Lamb [13] who predicted two categories of such modes,
namely, the spheroidal and the torsional modes. They are
labeled by the angular momentum quantum number l,
where l � 0; 1; 2; . . . for spheroidal modes. However se-
lection rules for light scattering derived by Duval [14]
preclude the observation of torsional modes, while per-
mitting only spheroidal modes with l � 0 or 2 to appear
in the light scattering spectrum. The sequence of eigen-
modes, in increasing order of energy, is indexed by n (n �
1; 2; 3; . . . ), where n � 1 corresponds to surface modes
and values of n � 2 are associated with inner modes of
the elastic sphere.

Samples used in the Raman studies are not particularly
suited for the study of confined acoustic modes for the
following reasons. First, the broad and poorly resolved
spectra of these samples made mode assignment difficult.
The particles studied were not perfectly spherical in
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rise to an undesirable broadening of the acoustic modes
resulting in spectra that were not well resolved. In fact
confined modes were not directly observed as individual
spectral peaks but rather as component peaks obtained
from the decomposition of broadbands. Second, analyses
were complicated by the presence of the matrix surround-
ing the particles. This means that the stress-free boundary
condition in the Lamb theory is not fulfilled. Effects due
to the matrix include spectral line broadening [15], on top
of that arising from the ‘‘imperfection’’ of particles men-
tioned above, and even suppression or elimination of
surface modes [16]. Additionally, spectral peaks due to
the matrix itself can obscure those of the sphere.

We found that synthetic opals, with their intercon-
nected networks of ordered, close-packed SiO2 nano-
spheres having diameters ranging from 200 to 340 nm,
offer an excellent system for the investigation into the
quantization of acoustic modes. One of their important
applications is in their use as templates in the fabrication
of photonic crystals [17]. Unlike earlier systems studied,
the silica spheres are not embedded in any matrix, mak-
ing synthetic opals a much simpler system to investigate.
For instance, coupling of the spheres with the surround-
ing matrix medium does not exist here thus allowing us to
apply Lamb’s theory, which deals with spheres with a free
surface, in the analysis of our results. Confined mode
frequencies for particles in this size range fall within
the gigahertz domain and Brillouin light scattering is
ideally suited for the investigation of these modes.
Scattering from these unembedded silica particles with
a well-defined (near-perfect spherical) shape, and which
are monodisperse (diameter deviation <3%), produces
well-resolved Brillouin spectra. These spectral features
afforded the detection of confined modes of n � 1; 2; 3,
and 4, the highest number of inner modes measured so far.

The samples studied are in the form of synthetic opals
obtained from JSC Opalon. They are composed of highly
ordered arrays of amorphous SiO2 nanospheres arranged
in a face-centered cubic lattice. Our scanning electron
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FIG. 1. Scanning electron microscope image of a synthetic
opal sample comprising highly ordered monodisperse SiO2

spheres of 204 nm diameter.

FIG. 2. A typical p-p polarized Brillouin spectrum of the
340 nm-diameter SiO2 nanosphere sample. Experimental data
are denoted by dots. The spectrum is fitted with Lorentzian
functions (dashed curves) and the resultant fitted spectrum is
shown as a solid curve. Snl and Anl denote the respective Stokes
and anti-Stokes peaks arising from confined acoustic modes in
the nanospheres.
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sample consists of near-perfect spheres of the same
diameter; samples with nanosphere diameters of 204,
237, 284, and 340 nm (� 3%) were studied. Brillouin
spectra were recorded at room temperature in the
180�-backscattering geometry using a (3� 3)-pass tan-
dem Fabry-Pérot interferometer equipped with a silicon
avalanche diode detector and the 514.5 nm line of an
argon-ion laser. The laser light was incident on the top
surface of each sample such that the surface normal lies in
the scattering plane.

Figure 2 shows the p-p polarized Brillouin spectrum
recorded at an incident angle of 70�, of a 340 nm-
diameter SiO2 nanosphere sample. It features six well-
separated Brillouin peaks lying between about 7–27 GHz.
Similar spectra were obtained for spheres of other di-
ameters. It is noteworthy that the frequencies and relative
intensity of these peaks are independent of polarization
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and the incident angle. Additionally the Brillouin spec-
trum is independent of the in-plane orientation of the
samples. These observations imply that the six spectral
peaks observed arise from the acoustic modes of individ-
ual nanospheres rather than those of the bulk sample. The
resulting Brillouin frequencies were plotted as a function
of inverse nanosphere diameter in Fig. 3 which clearly
reveals their linear dependence.

The eigenvalue equation [16,18] for the spheroidal
mode (for l � 0) is
2
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where 	 and � are the eigenvalues, and jl��	 the spherical
Bessel function of the first kind. The eigenvalues can be
expressed as

	nl � 
�nlD=VL and �nl � 
�nlD=VT; (2)

where �nl is the spheroidal mode frequency; VL and VT
are the respective longitudinal and transverse sound
velocities.

The eigenvalues for each l depend on only the two
independent bulk parameters, VL and VT , which were
found by fitting the calculated frequencies �nl, obtained
from Eqs. (1) and (2), to the experimental ones �expt

nl to
minimize the residual R ( �

P
n;l
�nl � �expt

nl �2). The sum-
mation involves only the following four modes: �n; l	 �
�1; 0	, (2,0), (2,2), and (3,0). These modes were chosen as
they appear as sharper Brillouin peaks and hence their
frequencies were measured with a higher precision. Next,
a two-dimensional mesh for the two parameters was
created, and the residual, R, computed at each point on
the mesh. The optimal fit corresponded to the smallest R.
Fitting yielded longitudinal and transverse acoustic mode
velocities of VL � 5279 m=s and VT � 3344 m=s, re-
spectively. The Young’s modulus and Poisson ratio of
our SiO2 nanospheres estimated from these velocities
are 57.3 GPa and 0.17, based on a density of 2:2�
103 kg=m3 for bulk synthetic silica glass [19]. These
values are reasonably close to the Young’s modulus and
Poisson ratio of 72.9 GPa and 0.17, respectively, measured
by Comte and von Stebut, for bulk fused silica [20]. The
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FIG. 3. Dependence of Brillouin peak frequency on the in-
verse nanosphere diameter. Experimental data are denoted by
dots. The lines represent the theoretical frequencies, �nl, given
by Eq. (3), for various modes labeled by (n; l).
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calculated frequencies �nl (in GHz) are given by
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(3)

where D is the diameter of the sphere (in 10�6 m).
Reference to Fig. 3 shows that there is excellent agreement
between the calculated and measured values of the fre-
quencies. One interesting feature is the proximity of the
two lowest-gradient lines corresponding to the respective
(n � 1; l � 0) and (n � 1; l � 2) modes to which the
same lowest-frequency Brillouin peak is assigned. This
narrow peak could not be resolved into two modes.

It is noteworthy that measurements made in p-p and
p-s polarization configurations yielded Brillouin spectra
that are identical, in contradiction with the predic-
tion made by Duval [14] for Raman scattering. He
found that spheroidal modes with l � 0 produce only
polarized (p-p) Raman spectra, while those with l � 2
give both polarized and depolarized (p-s) ones.
Furthermore, our measured relative intensities differ
from the theoretical ones calculated by Montagna and
Dusi [15]. For instance, for the spheroidal l � 0 mode,
the calculated intensity ratio of the n � 2 to the n � 1
mode of 0.12 is much smaller than our measured ratio.
There are major differences between our Brillouin scat-
tering and the Raman scattering experiments. In the
former, the size of the spheres is of the same order of
the excitation light wavelength, while in the latter, it is
much smaller. The theoretical calculations of Duval [14]
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as well as Montagna and Dusi [15] are based on the
assumption of the sphere diameter being much shorter
than the excitation light wavelength. The invalidity of
this assumption in our case could account for the discrep-
ancies between our Brillouin observations and the theo-
retical Raman predictions.

In summary, we report the first observation, by
Brillouin light scattering, of multiple acoustic modes in
three-dimensional ordered arrays of matrix-free SiO2

nanospheres. Our analysis, based on the Lamb theory,
indicates that the discrete modes observed are a conse-
quence of the quantization of acoustic modes due to
spatial confinement by the nanospheres. A combination
of the following features of the nanospheres in the present
study — near-perfect spherical shape, monodisperse, and
matrix-free environment — affords the detection of up to
seven confined acoustic modes, thus providing clear evi-
dence of acoustic mode quantization in a nanometer-size
particle.

The authors are grateful to H. K. Wong and P. M. Ong
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