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Coda-Wave Interferometry in Finite Solids: Recovery of P-to-S Conversion Rates
in an Elastodynamic Billiard
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We study the temperature dependence of diffuse reverberant ultrasound in elastic bodies. Transient
wave forms are found to undergo an almost pure dilation of 0.0277% per degree, related to the
temperature dependence of wave speeds. The wave forms also suffer a distortion that, we argue,
depends on the rate of conversion between the dilatational (P) and shear (S) waves. Distortion is found
to scale in a manner consistent with theoretical arguments but also appears to be a function of the
degree of ray chaos in the body, indicating that the mixing rates are slower in more regular bodies.
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Diffuse classical wave fields, whether made diffuse by
multiple scatterings or reflections, offer an attractive
venue for the exploration of wave statistics in general
and mesoscopic issues in particular. Ultrasound and mi-
crowaves [1-7] are particularly convenient in that current
laboratory technology allows access, not only to inten-
sities and spectra, but also to their fields and to the time
domain. In the absence of inelastic scattering a field
which is diffuse and thus nominally incoherent never-
theless maintains residual coherence that can lead to
striking phenomena. Coherent backscatter [8], Anderson
localization [9], random-matrix-like spectral statistics
[10], and long range field-field correlations [11] are among
these.

Here we explore the effect of temperature changes
on the diffuse field (the “coda”) formed by multiply
reflected ultrasonic waves in a reverberant three-
dimensional elastic body. The work may be considered
an extension of ideas advanced elsewhere [12-15], often
with an emphasis on the first effect of temperature
changes, viz., a wave form dilation due to wave speed
decrease. The present work differs in that here we focus on
the decay of correlation and demonstrate that this decay is
an interesting system-dependent quantity. It is an analog
to mesoscopic conductance fluctuations in quantum dots
but has a value in its own right as related to mode
conversion rates between the P and S (dilatational and
shear) waves which constitute the diffuse elastic wave
field, and thus in general to the dynamics of the field’s
energy distribution, and, in particular, to the chaos of the
ray trajectories.

The laboratory configuration is illustrated in Fig. 1. A
transient piezoelectric pulse is applied to a 2 mm diame-
ter pin transducer (useful frequency range 0.1to2 MHz in
mechanical (light oil) contact with an aluminum alloy
block. Specimen sizes ranged from 60 to 3000 cm?. A
reed relay, as described elsewhere [8], isolated the re-
sponse from source circuitry; the resulting acoustic signal
was amplified, digitized, and examined as a function of
specimen temperature. The specimen was allowed to
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cool, from initial temperatures of about 45 °C to 20 °C.
Temperature was monitored by a thermocouple, with
precision =0.03 °C. The test was conducted in a vacuum,
thus eliminating convective, and most conductive,
mechanisms. Typical cooling rates (an exponential re-
laxation to room temperature) were of order 10~*/sec.
This is consistent with theoretical estimates based on
Steffan-Boltzman radiative cooling and the known heat
capacity of aluminum. Based on the known thermal con-
ductivity of aluminum, we determine that the specimen
temperature was uniform to within better than 0.01 °C.

Figure 2 shows a short window on the signal from
different temperatures but the same age, 10 msec, corre-
sponding to a shear wave travel of 30 m, long compared
with specimen size. The two signals are almost identical
except for a relative displacement of 2.8 usec.

The change is quantifiable by forming a normalized
cross correlation between the signals obtained at different
temperatures.
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FIG. 1. Laboratory configuration. An aluminum specimen,

typically with nonparallel faces and a defocusing cylindrical
hole, is allowed to cool in a vacuum as temperature and ultra-
sonic response are monitored. A reed relay isolates the re-
sponse from the pulser.
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FIG. 2. Signals taken in the same time window are compared
for different sample temperatures. An offset has been added to
aid visibility.

on an ‘“‘age’ A. If the two signals differ only by a dilation,
then X is maximal, and unity, at a value of & equal to that
dilation. Any difference from unity corresponds to a
change in signals that cannot be comprehended by a
simple dilation. Such a difference is termed a distortion:
D = InX,,,,. Figure 3 shows a typical plot of X(&).

Theory for mean dilation is simple [13,15]. Coeffi-
cients of thermal variation of natural wave speeds c/L
in aluminum depend on the coefficients of variation of the
elastic moduli, and to a lesser extent the coefficient of
thermal expansion [16]. 85 = dIn(cge,/L) is —2.9 X
10~4/°C in aluminum alloys [17]. Similar measurements
of the dilatational wave temporal dilation coefficient & p
are generally less reproducible, so we measured the dila-
tational wave velocity shift in our materials (using con-
ventional plane wave propagation of 10 MHz plane waves)
and determined &p = dIn(Cyiaationa/L) = —1.685 *
0.015 X 10~%/°C. There is some evidence that §p varies
with plastic strain and alloy, so its precise value is
uncertain.

A diffuse wave field is a mix of dilatational and shear
waves. In the limit L > A we neglect the relatively small
contribution of other waves (e.g., Rayleigh surface waves)
and consider the field to have a fraction R/1 + R of shear
waves and a fraction 1/1 + R of longitudinal waves. Here
R is the familiar equipartition ratio [18] R = 2(c,/c,)?,
equal to 16 in aluminum. Thus we predict a mean diffuse
field temporal dilation of (8) = (RSg + 6p)/(R+ 1) =
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FIG. 3. Normalized cross correlation function X(g) for the
“big block” taken from 2 msec windows on wide-band signals
at age 40 msec and temperatures of 33 and 37 °C. Mean
dilation is 1.116 X 1073,
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—2.83 X 1074/°C, largely independent of uncertainties
in &p, and consistent with the dilation apparent in Fig. 3.
Observed dilations varied among our samples, from 2.77
in the big, medium, and small blocks that were cut from
the same parent block, to 2.88 in the cylinder and prism
(blocks are pictured below).

Theory for distortion is more complicated and is based
on a model of the signal as composed of a large number
of independent rays, each with its own temporal dila-
tion, each with its own multiply reflected path from
source to detector, and each with a history of mode
converting reflections from dilatational to shear and
back to dilatational. Again we neglect the small number
of sojourns as Rayleigh or other waves. In the same spirit
of neglecting surface effects compared to those of the
bulk, we also neglect variations in ray amplitude due to
temperature-dependent changes in reflection coefficients.
The change in a ray is thus solely due to the temporal
dilations of its dilatational and shear parts. A ray at age A
which has spent a time 7p as a dilatational ray and a time
tg = A — tp as a shear wave will have a net dilation of

8 = [Optp + O5ts5]/A = (1p/A)(6p — 85) + 5.

Its mean dilation is given in terms of the mean time spent
as a P wave: {(tp) = A/1 + R, so

(6) =[6p + 6sR]/(1 + R).
The variance of the ray dilations, at age A, is
vard = (8p — 84)*vartp/A>.

It is a straightforward matter to show that distortion of a
narrow band signal composed of rays with a distribution
of dilations and no temperature dependence of ray am-
plitudes, at frequency w, at age A, and after a temperature
shift dT, is given by

D = (dTwA)*vars /2.

The variance varfp in the time ¢, spent as a longitu-
dinal wave is expected to increase linearly with age A.
The rays are taken to randomly mode convert from P to §
(and S to P) at rate B (and @ = B/R), such that the mean
free time as a longitudinal (shear) waveis 1/8 (1/a). The
rate of mode conversion is assumed to be independent of
the past history of the ray. (This assumption is possibly
erroneous; there may be rays with exceptionally long
lifetimes in subsets of phase space, especially in objects
whose ray trajectories are not chaotic, or which have
small Lyapunov exponents.) Another calculation estab-
lishes that vartp is then given by (at large Aa such that
many mode conversions have taken place)

vartp = A2Ba/(a + B)?
= (2A/BIR*/(1 + R)’]
= 0.1044/B.
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FIG. 4. Distortion rises linearly with age and quadratically
with central frequency.

Isotropically distributed diffuse dilatational wave en-
ergy of density E,;/V in a volume V is delivered to a
bounding surface S at a rate familiar from room acoustics
[19] of ¢;SE;/4V. A detailed calculation using the elastic
wave reflection coefficients [20] pertaining to aluminum
shows that only 59% of this mode converted. Thus we
estimate 8 = 0.59¢,5/4 V.

The above series of assumptions and calculations con-
cludes with a predicted distortion

D = 0.356w%(8p — 85)%dT*(A/c,)(V/S)
= CdT?*f*A V/S,

which scales quadratically with temperature difference
and frequency, and linearly with age and the volume to
surface ratio of the sample. On taking the &’s to be
—1.685 and —2.9 X 1074, respectively, and c, to be
6370 m/sec, the coefficient C of that scaling is predicted
to be 3.26 X 10~*/deg> MHz’msec cm.

The independent ray picture used for the above argu-
ments is inadmissible at times comparable to or greater
than the Heisenberg time (density of states) ty =
Vo?/m(2/c} +1/c}] [18] at which the normal modes
become distinct. At ages A > ty, responses are better
expressed as modal expansions in terms of uncorrelated
modes. Taking the fractional change in a natural fre-
quency to be a random number from a distribution with
the specified mean (8), and a variance for which we have
at present no theory [21]. It is not difficult to show that
distortion in this regime should be quadratic in age and
temperature and frequency, with a coefficient which de-
pends on that variance.

Figure 4 shows the measured distortion D for a band
with central frequency f = 300 kHz and a temperature
difference of 4°. The object is the “medium block,”
illustrated in Fig. 5. The dependence is linear for small
ages but steepens noticeably at greater ages. As the
Heisenberg time for this object at this frequency is
88 msec, such a steepening is expected. Figure 4 also

254302-3

FIG. 5. The aluminum block specimens. Clockwise from the
lower left they are the prism (V = 60.4 cm®), the big block
(2855 cm?), the medium block (906 cm? after extra cut), the
rectangle, the cut rectangle (804) pierced by many large
scalloped slits, the small block (561), and the cube with one
flat-bottomed slit (340). The 10 cm tall X 18 cm diameter cyl-
inder is not pictured.

shows the expected purely linear age dependence in this
block at higher frequencies where the Heisenberg time is
greater. The quadratic dependence on frequency is appar-
ent. Figure 6 illustrates the predicted quadratic depen-
dence on temperature difference d7.

As the observed distortions scale well with age, with
frequency? and with temperature?, it is convenient to
summarize all measurements by plotting their apparent
coefficients C. Figure 7 compares the theoretical value
3.26 X 10™* per deg?, per MHz?, per msec, per cm with
that seen in a set of samples, with volumes ranging from
60 to 3000 cm?, and volume to surface ratios ranging
from 0.6 to 2.5 cm. In all cases dimensionless speci-
men sizes Lw/c, are much greater than unity. Most
distortion coefficients lie close to the theoretical predic-
tion. The smallest distortions, those of the prism, the cut
rectangle, the small block, and the large block, are those
of the samples which one supposes would have ray tra-
jectories which mix rapidly and explore phase space the
most quickly and most closely accord with the assump-
tions of the theory. Their distortions are close to predic-
tions. The greatest distortions, those of the cube with slit,
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FIG. 6. Distortion is proportional to the square of tempera-
ture difference.
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FIG. 7. Observed distortion coefficients C. All values are
based on distortions observed at 600 to 900 kHz (except for
the prism for which the frequencies were 1200 to 1700 kHz),
and 1° to 4° of temperature difference. The case of the cylinder
(C = 38.3, V/S = 2.5 cm) is off the scale. Theory is indicated
by the solid line.

the medium block, and most especially the rectangle and
the cylinder, are the objects which one considers less
chaotic. The cube with a slit is technically only pseudoin-
tegrable. The medium block is not, owing to the defocus-
ing surface presented by its hole. One nevertheless argues
that the medium block only slowly mixes its ray tra-
jectories. Owing to its near parallel top and bottom sur-
faces (oblique by 5°) it has “bouncing ball” orbits of
exceptionally long life. After an additional more oblique
cut which increased this angle to 15°, distortion was
lowered by about 20% and brought closer to theory. The
cylinder is the most extreme example. Its ray trajectories
are integrable and the object has a continuous symmetry.
Its distortion is several times greater than any of the
others. The theory appears to provide a lower bound on
all the observations. This is in accord with the theory’s
assumption of a well mixed phase space being a limit-
ing case.

Similar measurements were conducted in aluminum
plates. The shorter Heisenberg time there and the plate’s
highly dispersive multibranched guided Lamb waves lead
to rich behaviors. Distortion is a complex function of
frequency. A quantitative theory for distortion in a plate
remains unformulated.

Theory for three-dimensional blocks appears to be
essentially correct; distortions depend as predicted on
age, temperature, frequency, and object geometry.
Distortion magnitude is correctly predicted, within about
25%, for the more irregular objects. Distortion magni-
tude appears to correlate also with the degree of object
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irregularity, as if the mixing rate among the modes is
least in the more regular objects, thus leading to greater
distortion. One can ‘““hear the shape of ”’ these blocks. The
dependence on object irregularity suggests that the tech-
nique may be useful as a quantum chaos [7] probe of
phase space mixing rates, scars, and islands of stability.

This work was supported by NSF Grant No. CMS
99-88645.
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