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Information Flow in Chaos Synchronization: Fundamental Tradeoffs
in Precision, Delay, and Anticipation
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We use symbolic dynamics to examine the flow of information in unidirectionally coupled chaotic
oscillators exhibiting synchronization. The theory of symbolic dynamics reduces chaos to a shift map
that acts on a discrete set of symbols, each of which contains information about the system state. Using
this transformation we explore so-called achronal synchronization, in which the response lags or leads
the drive by a fixed amount of time. We find fundamental tradeoffs between the precision to which the
drive state is detected, the quality of synchronization attained, and the delay or anticipation exhibited
by the response system. To illustrate these tradeoffs, we provide a physical example using electronic

circuits.
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Separate chaotic systems can synchronize if allowed
to share information over a coupling channel [1]. The
implications of this phenomenon have stimulated a great
amount of research in both scientific and engineering
disciplines, yet many issues remain concerning the prop-
erties and robustness of synchronization. Central to these
issues is the fact that chaotic oscillators have nonzero
Shannon entropy — that is, they act like information
sources [2]. For unidirectional synchronization to occur
this information must be encoded at the drive, trans-
mitted through a coupling channel, and decoded at the
response system. These processes are identical to those
considered by modern communication theory [3]. It fol-
lows that communication concepts of information flow
can be applied to the phenomenon of chaos synchroniza-
tion provided an appropriate transformation is made.

Recently, Stojanovski et al. [4] used symbolic dynam-
ics to determine the minimum channel capacity required
to sustain chaotic synchronization in unidirectionally
coupled systems. They showed that a channel capacity
exceeding the Kolmogorov-Sinai entropy of the drive
system is theoretically necessary and sufficient to sustain
synchronization to any arbitrarily small error. In this
Letter we continue the analysis of synchronization using
this formalism. We find that a symbolic representation
reveals a relationship between the quality of synchroni-
zation, the precision of the detection process at the drive,
and the time delay or advance of the response with respect
to the drive. We show that a delay between drive and
response can be used to compensate for a poor detector
at the drive; conversely, a very good detector can be
exploited to allow anticipation in the response. These
results are not system specific but are general properties
of unidirectional synchronization of chaotic systems. As
a physical example, we devise an experiment with two
chaotic electronic circuits that explicitly demonstrates
these effects.

To begin, we consider two identical chaotic oscillators,
labeled drive (D) and response (R), which are connected
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by a unidirectional coupling channel. As shown in Fig. 1,
D is coupled to a channel input by means of a detector,
and the channel output is connected to R by a controller.
The detector output can be a function of some or all of the
dynamic variables of D, and the controller provides a
perturbation to R according to the signal received via
the channel. We say the two oscillators are synchronized
when all dynamical variables of R follow the correspond-
ing dynamical variables of D to within some specified
fidelity. Typically, one compares the states of D and R at
the same time; however, we also consider so-called ach-
ronal synchronization, in which the R lags or leads D by a
fixed amount of time [5].

To provide an intuitive understanding of the informa-
tion transmission required to sustain synchronization, we
consider the drive system

xp = flxp), (1

where xp is a vector of the drive system states and f
defines a flow. The response is

xg = flxg) + p(xp, xp), (2)

where xp is the corresponding response states and p
represents a controller designed to yield synchronization.
Any effects due to the detector and channel are also
included in p. We assume both oscillators can be repre-
sented as a return map through the method of Poincaré,
and we denote the time of the ith return as ;. Accordingly,
D is described by a return map of the form

xp(tiv1) = Flxp(t,)), (3)
D R
Oscillator Oscillator
common phase j )A

reference

FIG. 1. Drive-response configuration for investigating syn-
chronization with unidirectional coupling.
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and R can be described similarly; however, the controller
p introduces additional terms that can be used to main-
tain synchronization at R.

We suppose D and R are synchronized at #; with quality
N, where N, is the number of bits of precision. Given this
initial condition and the flow f, the response system can
predict the next return x,(#;4;) with a precision slightly
less than N, bits: the loss in precision is due to the
divergent flow inherent to chaotic dynamics. The precise
method by which R can make this prediction relies on an
ingenious choice of the controller p — here it is sufficient
to assume such a controller exists. Therefore, to maintain
synchronization, system D need only send the bits re-
quired to make the predicted value of xp(;, ) fully N,
bits accurate. The rate at which this information must be
sent is simply the Kolmogorov-Sinai entropy of the sys-
tem, and the theory of symbolic dynamics provides a
transformation that allows us to isolate the information
corresponding to these last bits of precision [4].

Symbolic dynamics is used to represent the continuous
trajectory of a chaotic oscillator using discrete samples
with finite precision [6]. To generate a symbolic repre-
sentation of a trajectory, the state space containing the
chaotic attractor is partitioned into regions, each of
which is labeled with a symbol such as “0”, “1”, etc.
Whenever the state enters a new region the corresponding
symbol is generated; for flows represented by a return
map, a new symbol is generated for each return. In this
way each trajectory is mapped to a bi-infinite symbol
sequence s, such as “...11101.11010111...”, where the
period indicates the current symbol in the sequence,
future symbols are written toward the right, and past
symbols to the left. Every trajectory on a chaotic attractor
produces a unique symbol sequence. Likewise, every
point x on a Poincaré surface can be mapped into se-
quence space by considering all of its images and pre-
images and replacing them with the appropriate symbol.
We denote this mapping as s = r(x).

State space and sequence space are topologically
equivalent provided the mapping r between them is one-
to-one and continuous. That is, every observed system
state corresponds to a unique symbol sequence and
nearby points in state space are also nearby in sequence
space. For two sequences s = ...s_,5_{ * 505153 ... and

t=...t_5t_ - tol11,... we define the distance between
them by [7]
1 — O(s; 1;)
ds, t) = 5,;_00 T (4)
where
O, S = ti’
8(s; ;) = { L, s # 1, (5)

Thus sequences s and t are nearby if they agree in the first
few symbols about i = 0. A partition that guarantees
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these properties is generating, and the resulting dynamics
in sequence space are entirely consistent with those in
state space. Finding a generating partition is straight-
forward for one-dimensional mappings, but much less
so in two or more dimensions [8]. Recently, efficient
numerical algorithms have been designed for the general
case [9,10]. In the following discussion we merely assume
that such a partition exists.

An important aspect of the symbolic description is that
it converts the dynamical system into a trivial shift map.
In sequence space the action of the return map (3) is to
shift all symbols one space to the left. If s; = r(x;), then
s;+; = (F(x;)) is computed in sequence space by simply
moving the period one symbol to the right. In practice,
we observe only a truncated representation of s; consis-
tent with our detector resolution. The shifting process
introduces new information that appears on the right-
hand side of the truncated sequence. To illustrate, we
consider a finite symbolic description of the s; such as
“11101.11010111°. The next return s;,; will be repre-
sented as “11011.1010111?”°, where ““?”’ is either a “0” or
a “1”. One can think of this symbol as a previously
undetectable detail of the initial condition or, in an ex-
perimental setting, as ultimately originating from noise.
This new symbol, then, is the information required to
maintain synchronization.

With regard to synchronization, the symbolic dynam-
ics representation immediately shows that the channel
need only transmit one symbol per cycle to maintain
synchronization between D and R to any level of preci-
sion. This is because only one new symbol is generated per
return; all the other symbols describing the state were
generated previously and have already been transmitted.
On average, this new symbol contains H bits of informa-
tion, where H is the Shannon entropy of the system.
Synchronization cannot be maintained if less than this
amount of information is transmitted per cycle. In this
context, H is related to the Kolmogorov-Sinai entropy in
bits per second by including the average symbol rate [3].
In the rest of this Letter we discuss factors that influ-
ence synchronization quality once this minimum condi-
tion is met.

To assess synchronization quality in sequence space,
we let s and t denote the current symbolic state of D and
R, respectively. We say s and t agree to m symbols when
d(s,t) =27™ As such, m quantifies the synchroniza-
tion quality; topological equivalence guarantees that D
and R rapidly approach each other in both sequence space
and state space as m is increased. On average, R contains
Qs = mH bits of information about D. Synchronization
of this quality is maintained when the controller produces
a perturbation such that the mth future symbol of D
appears in the mth position of R. The cost of increas-
ing m appears in the detector resolution: to detect the
mth symbol the detector must be able to extract Qp =
mH bits of information about the drive state. For true
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FIG. 2. Experimental configuration for demonstrating syn-
chronization via a symbol channel. Oscillators D and R are
identical chaotic oscillators, vg is a low-level sine wave to
phase lock the circuits, N represents nonlinear and active
components, and Dy is an ideal diode limiter implemented
using an active circuit.

synchronization R cannot contain more information
than the detector is capable of extracting from D; thus,
Os = Op.

In general, we can consider the case where we detect
and transmit the nth symbol in D, while we control at the
mth symbol in R. Accordingly, the resulting D and R
waveforms will be time shifted by L = m — n cycles.
For m > n the response lags the drive — a situation re-
ferred to as lag synchronization. In this case the quality
of synchronization exceeds the detector resolution. The
opposite scenario can be created as well. For n > m the
lag is negative and the response leads the drive. This
effect has been seen previously and has been described
as anticipating synchronization [11]. In sequence space
we can clearly see that an upper bound on synchroniza-
tion quality is m = n + L. Multiplying through by H, we
get the equivalent statement in an information sense:

Os = Qp + LH. (6)

This bound on synchronization quality, which is valid for
identical oscillators connected by a unidirectional and
noiseless channel, illuminates a fundamental tradeoff
between detector precision and achronal synchronization.
Namely, synchronization quality can be enhanced by lag,
even to the point that it can exceed the detector precision.

We now present a simple physical system in which the
above bound can be explored. The configuration of the
experiment is shown in Fig. 2. Systems D and R are
piecewise-linear LC circuits of a type used and docu-
mented previously [12]. These oscillators exhibit a simply
folded band attractor as shown in Fig. 3, with a dominant
spectral peak near 1.2 kHz. To eliminate phase drift
between the two circuits, a 30-mV (peak-to-peak) sine
wave at 1.19 kHz is connected in series with the tank
capacitor in each circuit. This low-level signal entrains
the phase of both oscillators to a common reference but
has a negligible effect on the amplitudes, which remain
chaotic and uncorrelated.

Return maps constructed using successive waveform
peaks for both D and R are shown in Fig. 3. The data
indicate that the systems are well approximated by a one-
dimensional, unimodal return map. Such maps have well-
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FIG. 3. Return map of successive peak voltages for D (black)
and R (gray), including generating partitions (vertical lines).
The inset shows the attractor for D.

understood properties in symbolic dynamics — namely, a
two-symbol alphabet, a generating partition at the critical
point, and no memory of past symbols. We have estimated
the partition voltages to be vy = 0.301 V and vy =
0.293 V for D and R, respectively. Following the usual
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FIG. 4. Drive (vp) and response (vg) waveforms showing
synchronization with an 8-cycle lag (A7 = 6.7 ms). D is de-
tected with n = 1 bit of precision, and R is controlled at the
m = 8th future bit.
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FIG. 5. Drive (vp) and response (vgi) waveforms showing
synchronization with 2-cycle anticipation (A= 1.7 ms). D
is detected with n = 9, and R is controlled at m = 6.

convention, we say each oscillator generates the symbol
“0” for a peak less than the partition voltage and the
symbol “1” otherwise.

The lookup tables and shift register shown in Fig. 2 are
implemented using a DSP card (Innovative Integration
ADC64) hosted in a PC. The D waveform is sampled
continuously by the DSP card at ~40 kHz and a voltage
peak is found for each cycle. The voltage peak is con-
verted by a lookup table into a symbol sequence, from
which the nth symbol is detected and transmitted to R. At
R, the new symbol is shifted into the least significant bit
of an m-bit shift register that is clocked at the symbol
arrival rate. The symbol sequence held in the shift regis-
ter is mapped by the lookup table back into a voltage
representing the state of D: we use this voltage to control
R via dynamic limiting [13]. We allow one cycle of
oscillator time for this processing. The lookup tables,
which serve as the mapping r(x) for D and R, are as-
sembled beforehand by observing each uncontrolled os-
cillator for 200000 cycles and averaging initial
conditions for each observed sequence [12]. We note that
any chaos control technique for encoding symbolic dy-
namics can be used with equal effect [14-17].

With this setup we can vary n and m as discussed
earlier. In Fig. 4 we show results for the case n = 1 and
m = 8§, corresponding to a low-precision detector and a
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high-precision controller. As shown, the controller forces
R to accurately reconstruct the D waveform, albeit with a
lag time of eight cycles (m—n, plus one processing cycle).
The large lag thus enables relatively high quality achronal
synchronization despite detecting D with only 1-bit pre-
cision. For the results in Fig. 5 we use n = 9 and m = 6,
so that the precision of the detector exceeds that of the
controller. Again, achronal synchronization is observed;
however, R is now leading D by two cycles. This example
of anticipating synchronization is a direct result of the
high-precision available to the detector.

This experiment was designed to explicitly illustrate
properties derived from the symbolic dynamical model of
synchronization; in principle, all unidirectional chaos
synchronization can be viewed in this way. The novelty
of our experimental setup is in the sophisticated detector
and controller that allow us to approach fundamental
limits. In this sense we have constructed an ideal sce-
nario. However, it is hoped that this extreme can be
compared to more common scenarios with less contrived
couplings, thereby providing an estimate of the overhead
available to improve synchronization and the trade-offs
necessary to achieve it.
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