
P H Y S I C A L R E V I E W L E T T E R S week ending
27 JUNE 2003VOLUME 90, NUMBER 25
Efficient Engineering of Multiatom Entanglement through Single-Photon Detections
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We propose an efficient scheme to engineer multiatom entanglement by detecting cavity decay
through single-photon detectors. In the special case of two atoms, this scheme is much more efficient
than previous probabilistic schemes, and insensitive to randomness in the atom’s position. More
generally, the scheme can be used to prepare arbitrary superpositions of multiatom Dicke states
without the requirements of high-efficiency detection and separate addressing of different atoms.
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FIG. 1 (color online). (a) The schematic setup to generate
entanglement between two atoms in different cavities L
be possible to generate any superposition of the Dicke
states [12] between multiple atoms in an optical cavity.

and R. (b) The relevant atomic level structure and the laser
configuration.
There is a large current interest in generation and
engineering of quantum entanglement, with applications
for fundamental tests of quantum mechanics [1], for
high-precision measurements [2], and, in particular, for
implementation of quantum communication and compu-
tation [3]. Although quantum entanglement is typically
fragile to practical noise and technical imperfections,
there exist elegant ways to overcome this sensitivity by
designing schemes with inherent robustness to diverse
sources of noise. Some schemes with this property have
been known for entangling two single atoms [4–9] as
well as for entangling macroscopic atomic ensembles
[10,11]. In these schemes, feedback is typically applied
to the system of interest based upon the outcome of
certain measurements. The protocols are thereby proba-
bilistic, succeeding only conditionally for particular
measurement results. Imperfections and noise in these
schemes decrease the success probability, but have no
influence on the fidelity of the intended state generation
for the ‘‘successful’’ subset of trials. In this way, a high-
fidelity entangled state can be obtained simply by repeat-
ing the scheme successively.

Here, we propose a robust scheme to produce and
engineer entanglement between multiple atoms in optical
cavities. Compared with the previous robust schemes
[4–11], our protocol has the following favorable features.
(i) It is much more efficient in the sense that the success
probability can be close to unity, whereas in the previous
schemes [4,5,8–11], the success probability is required to
be much smaller than 1 to have the property of inherent
robustness. (ii) It is more insensitive to certain practi-
cal sources of noise, such as randomness in the atom’s
position, atomic spontaneous emission, or detector inef-
ficiency. (iii) Individual addressing of atoms is not re-
quired [6], nor are single-photon states as initial resources
[7]. (iv) Most importantly, our scheme is not limited to
generation of two-atom entanglement. Indeed, we show
that based on current experimental technology, it should
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These Dicke states and their superpositions, including the
multiparty GHZ states as special cases, are typically
highly entangled, with many applications in quantum
information science [2,13–15]. Their entanglement can
be directly detected without separate addressing [2].

As the scheme here is inherently robust to noise, it
works in principle for entangling atoms (or ions) both
in free-space configurations and in high-Q cavities, albeit
in the free-space case one has a much smaller efficiency to
collect the emitted photons. In this Letter, for a close
relation with the current experimental efforts [16–18],
we assume that there is a standing-wave high-Q cavity
around the atoms [19,20] to improve the collection
efficiency.

To explain the scheme, let us start from the simplest
case with two atoms trapped in two different cavities. The
schematic setup is shown in Fig. 1(a), with the relevant
atomic levels depicted in Fig. 1(b). The states jgi, j0i, j1i
correspond to the hyperfine and the Zeeman sublevels of
alkali atoms in the ground-state manifold, and jei corre-
sponds to an excited state. The atom is initially prepared
in the state jgi, but the basis vectors of a qubit are
represented by the states j0i and j1i. The transition jgi !
jei is driven adiabatically through a classical laser pulse
with the corresponding Rabi frequency denoted by ��t�
[21]. With the driving pulse, the atom is transferred with
probability pc ’ 1 to the j0i and j1i states by emitting a
photon from the transitions jei ! j0i or jei ! j1i.
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P H Y S I C A L R E V I E W L E T T E R S week ending
27 JUNE 2003VOLUME 90, NUMBER 25
Without loss of generality, we assume that the transitions
jei ! j0i and jei ! j1i are coupled to two degenerate
cavity modes ah and av with different polarizations h
and v. The decay pulses from the two cavities are inter-
fered at a polarization beam splitter (PBS), with the
outputs detected by two single-photon detectors after a
45� polarizer [denoted as P45 in Fig. 1(a)]. The small
fraction of the transmitted classical pulse can be easily
filtered based on the frequency selection as detailed in
Ref. [21]. For the decay pulse from the R cavity, a
polarization rotator R�
=2� is inserted before the PBS
which exchanges h and v polarizations of the incoming
photon. Conditioned upon registering one photon from
each of the detectors, the two atoms in the cavities L and
R will be prepared into the maximally entangled state

j�LRi � �j01iLR 	 j10iLR�=
���
2

p
: (1)

To see this, we write down the interaction Hamiltonian
in the rotating frame, which, for each of the cavities, has
the form (setting �h � 1)

H � ��t�jeihgj 	 g0jeih0ja
h 	 g1jeih1ja

v 	 H:c:; (2)

where g0 and g1 are the corresponding coupling rates. The
cavity outputs a�out �� � h; v� are connected with the
cavity modes a� through the standard input-output rela-
tions _aa� � �i
a�;H� � �a�=2�

����
�

p
a�in�t� and a�out�t� �

a�in�t� 	
����
�

p
a� [22], where � is the cavity decay rate, and

a�in�t�, with the commutation relation 
a�in�t�; a
�y
in �t0�� �

��t� t0�, denotes the vacuum cavity input. We are inter-
ested in the limit for which the variation rate of ��t� is
significantly smaller than the cavity decay rate �. In this
limit, we can define an effective single-mode bosonic
operator a�eff from the cavity output operator a�out�t� as
a�eff �

R
T
0 f�t�a

�
out�t�dt (see Refs. [21,23]), where T is the

pulse duration and f�t� is the output pulse shape, which
is determined by the shape of ��t� as f�t� �����
�

p
sin��t� exp
���=2�

R
t
0 sin

2����d�� with sin��t� �
��t�=

�����������������������������������������������
jg0j2 	 jg1j2 	 j��t�j2

p
. After the driving pulse,

for each of the cavities � (� � L;R), the final state
between the atom and the corresponding cavity output
has the form

j�i� � �g0j0i�jhi� 	 g1j1i�jvi��=
��������������������������
jg0j

2 	 jg1j
2

q
; (3)

where j�i � a�yeff jvaci, �� � h; v�, and jvaci denotes the
vacuum state of the optical modes.

If the driving pulses have the same shape ��t� for the L
and R cavities, the output single-photon pulses from the
two cavities will also have the same shape f�t�, and they
will interfere with high visibility at the polarization
beam splitter (PBS). If one gets a ‘‘click’’ from each of
the detectors at the outputs of the PBS, the two incoming
photons can be either both in h polarizations or both in v
polarizations, and these two possibility amplitudes are
coherently superposed when the incoming photon pulses
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overlap with each other with the same shape. Therefore,
the measurement in Fig. 1(a), together with the polariza-
tion rotator R�
=2�, corresponds to projecting the whole
state j�iL � j�iR between the atoms and the photons
onto a subspace with the projection operator given by
Ps � jhviLRhhvj 	 jvhiLRhvhj. Within this measurement
scheme, the state j�iL � j�iR is effectively equivalent to
the four-particle GHZ state

j�effi /Psj�iL � j�iR / �j01iLR � jhviLR

	 j10iLR � jvhiLR�=
���
2

p
: (4)

The 45� polarizers in Fig. 1(a) project the photon polar-
izations to the �jhi 	 jvi�=

���
2

p
state. It immediately fol-

lows from Eq. (4) that after this measurement the two
atoms will be prepared in the maximally entangled state
(1). If one rotates the angles of the polarizers in Fig. 1(a),
corresponding a measurement of the incoming pho-
ton polarizations either in the fjhi; jvig basis or in the
f�jhi 	 jvi�=

���
2

p
; �jhi � jvi�=

���
2

p
g bases, one can further

demonstrate four-particle GHZ-type of entanglement be-
tween the atoms and the photons as indicated by the
effective state (4) [24]. The 45� polarizer can also be
replaced by a PBS with both of its outputs detected by
single-photon detectors. The measurement success proba-
bility is then increased by a factor of 2 for each side, and
the overall success probability of this scheme becomes
ps � 2jg0g1j

2=�jg0j
2 	 jg1j

2�2.
Before introducing the multiatom entangling scheme,

we offer a few remarks about this two-cavity scheme.
First, it is evident that the scheme is inherently robust to
atomic spontaneous emission, output coupling ineffi-
ciency, and detector inefficiency, all of which contribute
to loss of photons. Since a click from each of the detectors
is never recorded if one photon is lost, these processes
simply decrease the success probability ps by a factor of
�2 (where 1� � denotes the loss for each of the photons),
but have no influence on the fidelity of the final state
j�LRi. Second, our scheme does not require localization
of the atom in the cavity to the Lamb-Dick limit. For the
standing-wave cavity shown in Fig. 1(a) and with the
collinear pumping configuration proposed in Ref. [21],
��t�, g0, and g1 depend on the atom’s position through
approximately the same cavity mode function. The pulse
shape f�t�, which is determined by the ratios ��t�=g0 and
��t�=g1, thus becomes basically independent of the ran-
dom variation in the atom’s position. For a traveling-wave
cavity or for a free-space configuration, the atom’s posi-
tion affects only the common phase of the coupling rates
g0 and g1, and in this case, a transverse pumping con-
figuration also suffices since the randomness in the com-
mon phase of g0 and g1 has no influence on the final
entangled state j�LRi. Finally, the success probability of
our scheme is ps � 1=2 in the ideal case with g0 � g1
and �� 1, which shows that the present scheme is sig-
nificantly more efficient than the previous schemes
253601-2
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[4,5,8–11], where the success probability is required to be
much smaller than 1 even if �! 1.

We next extend our basic scheme to entangle multiple
atoms in the same optical cavity. The schematic setup is
shown by Fig. 2, with each of the Na atoms taken to have
the same level structure as depicted in Fig. 1(b) and with
the atoms not separately addressable [16–18]. The initial
state of the system has the form jGi �

NNa
i�1 jgii with all

the atoms prepared to the ancillary state jgi. The driving
laser, incident from one side mirror, is now divided into
M sequential pulses, withM � Na=2. We assume that the
intensity of the pulse is controlled so that for each of the
M pulses, an approximate fraction 1=M of the atomic
population is transferred adiabatically from the jgi state
to the j0i or j1i states, by emitting on average Na=M
photons with h or v polarizations. The output photons
from the cavity decay are split by a PBS according to
their polarizations, and then registered through two
single-photon detectors (called h and v detectors, respec-
tively). For each driving pulse, we may or may not get a
click from the h or v detectors, which are assumed not to
distinguish one or more photons. For the wholeM pulses,
we can count the total number of ‘‘clicks’’ �nh; nv�
registered from the �h; v� detectors, respectively. Of
course, nh 	 nv � Na since there are only Na atoms. If
it turns out that nh 	 nv � Na, the following Dicke state
results for the Na atoms:

jNa; nhi � c�nh��s
y
0 �
nh�sy1 �

Na�nh jGi: (5)

Here, the collective operators sy� �� � 0; 1� are defined as
sy� �

PNa
i�1 j�iihgj, and the normalization coefficient

c�nh� � 
Na!nh!�Na � nh�!��1=2. Except the trivial cases
with nh � 0; Na, clearly the Dicke state jNa; nhi is en-
tangled. The multiatom Dicke states and the GHZ states
in general belong to different classes of entangled states,
and the Dicke states are relatively more robust to the
influence of noise [13]. The Dicke states have some inter-
esting applications in quantum information processing
and in high-precision measurements [14,15].

To understand why a Dicke state results conditioned
upon the above type of measurement, we note that each
atom has an equal probability to emit a photon with the
same pulse shape for each driving pulse for the assumed
sequence of adiabatic passages. Hence, each driving pulse
FIG. 2 (color online). The schematic setup to generate entan-
glement between multiple atoms in the same cavity. The
polarization rotator R��; ’� is only required for generation of
superpositions of the Dicke states.
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involves a collective excitation of the atoms to the j0i or
j1i levels with homogeneous superposition coefficients.
For the subset of measurements for which we register Na
photoelectric events in total from the h and v detectors
for the wholeM pulses, each click of the detectors should
correspond exactly to the emission of one and only one
photon by the atoms. This is the case even if there are
photon loss and detector inefficiencies, because we post
select only the trials with exactlyNa photoelectric events.
Therefore, for each click registered from the h or v
detectors for these trials, we should apply correspond-
ingly the collective operators sy0 or sy1 to the atomic state.
After registering nh h-polarized photons and �Na � nh�
v-polarized photons, we get exactly the state of Eq. (5).
Similar to the two-cavity scheme, this multiatom en-
tangling scheme is also robust to practical imperfections,
such as a moderate randomness in the atoms’ positions
and various sources of photon loss. Again, photon loss
reduces the success probability instead of the state
fidelity.

To calculate the success probability of the multi-
atom entangling scheme, we note that the stepwise
driving method described above is actually equivalent
to the following one-step driving method: we transfer
all the atomic population to the j0i and j1i levels with a
single driving pulse, but both of the h and v polar-
ized photons after the PBS need to be further split
equally into M paths through a series of beam splitters,
with separate photoelectric detection for each path. The
state in Eq. (5) corresponds to the case when nh h detec-
tors and �Na � nh� v detectors register a photoelectric
event. When two or more photons go to the same path,
the number of detector events is certainly less than Na.
So, for overall success with Na events, we require that
each photon follow a distinct path, for which the success
probability is given by psi � �2M�!=
�2M� Na�!�2M�Na�
(in total there are 2M paths. For simplicity, we have
assumed g0 � g1 so that one has equal probability to
get h or v photons.) All photon loss processes simply
contribute to an undercount probability 1� � for each
photon. Hence, the success probability to generate one of
the Dicke states of Eq. (5) is psucc � �Napsi, while the
probability to obtain a specific Dicke state jNa; nhi is
pnh � psucc2

�NaNa!=
nh!�Na � nh�!�. Excluding the triv-
ial cases with nh � 0; Na, we then find that the success
probability to obtain an entangled state from this scheme
is pen � psucc�1� 2�Na	1�, which tends to unity in the
case 2M� Na if we neglect contributions from photon
loss (i.e., �! 1). This scheme could thus be quite effi-
cient. For instance, with� � 0:70 �0:20� andM � 50 �10�
pulses, pen � 0:018 �1:9� 10�4� for Na � 10 �5� atoms,
so that repeating this scheme on average 1=pen � 56
�5:4� 103� times leads to a high-fidelity entangled state
between 10 �5� atoms. In current experimental setups
[16,17], the typical duration �t of the adiabatic pulse
is a few hundred nanoseconds, so that the total duration
253601-3
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�M=pen��t ’ 1 �20� ms for entangling 10 �5� atoms with
� � 0:70 �0:20�. The currently available trapping time of
atoms in high-Q cavities is about 1 sec [16].

Finally, we would like to extend further the above
scheme to generate any superposition of the Dicke states
jNa; nhi. For this purpose, we simply insert a polarization
rotator R��; ’� before the PBS as shown in Fig. 2,
which transforms the photon polarizations according to
jhi ! cos�jhi 	 sin�ei’jvi and jvi ! � sin�e�i’jhi 	
cos�jvi. We assume that the parameters �; ’ can be
separately controlled for each driving pulse, and are de-
noted by �m; ’m for themth pulse. As before, we consider
only the subset of cases for which exactly Na photoelec-
tric events are registered from the whole M-pulse se-
quence. If the h (or v) detector clicks for the mth pulse
with the control parameters �m;’m, the corresponding
atomic excitation operator Pm0 (or Pm1) is expressed by
the collective operators sy� as Pm� � cos�ms

y
� �

��1�� sin�mei’m��1��sy1�� (� � 0; 1). So, after Na regis-
tered events, the final atomic state has the form j�Fi �QNa
i�1 Pmi�jGi, where mi �i � 1; 2; . . . ; Na� denote the set

of driving pulses for which we register a photon. Each
operator Pmi� introduces two real parameters �mi ; ’mi , so
there are 2Na independently controllable real parameters
in the state j�Fi. The state j�Fi can be written in general
in the form

j�Fi �
XNa
nh�0

b�nh�jNa; nhi; (6)

where the Dicke states jNa; nhi are defined by Eq. (5), and
the complex superposition coefficients b�nh� are func-
tions of �mi ; ’mi . Superpositions of the Dicke states
have 2Na degrees of freedom, which exactly equals to
the number of control parameters �mi ; ’mi .

Actually, we can prove that an arbitrary superposition
of the Dicke states jNa; nhi [i.e., the state j�Fi with any
coefficients b�nh�] is obtainable by choosing an appropri-
ate set of control parameters �mi ; ’mi . For the proof, we
write the state (6) in the form j�Fi � b�Na�c�Na� �PNa
nh�0 b

0�nh��s
y
0 �
nh�sy1 �

Na�nh jGi, where b0�nh� �
c�nh�b�nh�=
b�Na�c�Na��, and without loss of generality
we have assumed b�Na� � 0. Each of the atomic excita-
tion operators Pmi� can be expressed as Pmi� /
�sy0 � rmi�s

y
1 �, where the complex coefficient rmi�, deter-

mined by the real parameters �mi ; ’mi , is the relevant
control parameter. To prepare a desired state j�Fi with
the superposition coefficients b0�nh�, we need to choose
the parameters rmi� to satisfy the algebraic equationQNa
i�1�s

y
0 � rmi�s

y
1 � �

PNa
nh�0 b

0�nh��s
y
0 �
nh�sy1 �

Na�nh . It im-
mediately follows from this equation that the parameters
rmi� should be the Na solutions of the Nath-order alge-
braic equation

PNa
nh�0 b

0�nh�x
nh � 0, where x denotes the

variable. In the complex domain, there always exist Na
253601-4
solutions to the Nath-order algebraic equation, and the
parameters rmi� are uniquely determined from these so-
lutions if we do not care about the order of the excitation
operators Pmi� (note that they commute with each other).
This finishes the proof.
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