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Can Modern Nuclear Hamiltonians Tolerate a Bound Tetraneutron?
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I show that it does not seem possible to change modern nuclear Hamiltonians to bind a tetraneutron
without destroying many other successful predictions of those Hamiltonians. This means that, should a
recent experimental claim of a bound tetraneutron be confirmed, our understanding of nuclear forces
will have to be significantly changed. I also point out some errors in previous theoretical studies of this
problem.
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model, the AV18 � Illinois-2 (AV18/IL2) model, is used
in the present study.

FIG. 1 (color online). Energies of n in external wells versus
the well-depth parameter V0.
An experimental claim of the existence of a bound
tetraneutron cluster (4n) was made last year [1,2]. Since
then, a number of theoretical attempts to obtain such
bound systems have been made, with the conclusion that
nuclear potentials do not bind four neutrons [3–5].
However, these studies have been made with simplified
Hamiltonians and only approximate solutions of the four-
neutron problem. In this Letter, I use modern realistic
nuclear Hamiltonians that provide a good description of
nuclei up to A � 10 and accurate Green’s function Monte
Carlo (GFMC) calculations to improve this situation.
(Earlier studies, also with generally negative results, are
cited in Refs. [3–5].)

A series of papers [6–8] have presented the develop-
ment of GFMC for calculations of light nuclei (so far, up
to A � 10) using realistic two-nucleon (NN) and three-
nucleon (NNN) potentials. For a given Hamiltonian, the
method obtains ground and low-lying excited state ener-
gies with an accuracy of 1%–2%. I use this method in the
present study; tests similar to those reported in the above
papers have verified that the energies reported here have
similar accuracies, with two exceptions: (i) when the
energies are very close to 0, the error is probably a few
100 keV; and (ii) the 4H calculations contain a technical
difficulty that might be introducing systematic errors of
up to 1 MeV. (This problem arises from the fact that
GFMC calculations are made using a slightly simplified
version of the Hamiltonian. The expectation value of the
difference of the desired and simplified Hamiltonians is
evaluated perturbatively and might have a large relative
error. In all cases except 4H, this difference is small; in
particular, for 4n it is less than 0.1 MeV. However, for
unknown reasons, the change is up to 2.5 MeV in 4H.) A
review of nuclear GFMC is in Ref. [9]; complete details of
how the present calculations were made are in Refs. [6–8].

By using the Argonne v18 NN potential (AV18) [10]
and including two- and three-pion exchange NNN poten-
tials, a series of model Hamiltonians (the Illinois models)
were constructed that reproduce energies for A � 3–10
nuclei with rms errors of 0.6–1.0 MeV [11]. The best
0031-9007=03=90(25)=252501(4)$20.00 
GFMC starts with a trial wave function �T , which
determines the quantum numbers of the state being com-
puted. For p-shell nuclei studied in the above references,
the Jastrow part of �T contains four nucleons with an
alpha-particle wave function and A� 4 nucleons in
p-shell orbitals. This is multiplied by a product of non-
central two- and three-particle correlation operators. I use
�T for 4n with the same structure except there are two
neutrons in a 1S0 configuration and two in the p shell. The
total J	 of the 4n ground state is assumed to be 0�. There
are two possible symmetry states in the p shell using LS
coupling: 1S�22� and 3P�211�; both are used in these
calculations. I could find no �T that gave a negative
energy for 4n using the AV18/IL2 model. GFMC
calculations, using propagation to very large imaginary
time (� � 1:6 MeV�1), also produced positive energies
that steadily decreased as the rms radius of the system
increased.

In a second study, I added artificial external wells of
Woods-Saxon shape to the AV18/IL2 Hamiltonian and
used GFMC to find the resulting total energies of the four
neutrons. Figure 1 shows results for wells with radii R �
3, 6, and 9 fm (all have diffuseness parameters of 0.65 fm)
and varying depth parameter V0. It seems clear that four
2003 The American Physical Society 252501-1
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FIG. 2. 1S0 phase shifts from AV18 and modifications to it.
The lines show the pp, pn, and nn phase shifts for the
unmodified AV18 while the symbols show the modified results.
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neutrons become unbound (have positive energy) signifi-
cantly before the well depth is reduced to zero. Linear fits
to the least-bound energies for each Woods-Saxon radius
parameter are also shown; these extrapolate to an energy
of �2 MeV when the external well is removed. (These
least-bound solutions have large rms radii. A transition
from the indicated linear behavior to a steeper linear
behavior is observed for deeper wells; this transition is
associated with a change to much smaller rms radii
solutions. The steeper fits, of course, extrapolate to
much larger positive energies.) This suggests that there
might be a 4n resonance near 2 MeV, but since the GFMC
calculation with no external well shows no indication of
stabilizing at that energy, the resonance, if it exists at all,
must be very broad. In any case, the AV18/IL2 model does
not produce a bound 4n.

The authors of Ref. [1] suggest that only small mod-
ifications of existing nuclear Hamiltonians may be neces-
sary to bind four neutrons. To study this possibility, I
made a number of modifications to the AV18/IL2 model.
In each case, the modification was adjusted to bind 4n
with an energy of approximately �0:5 MeV; the conse-
quences of this modification for other nuclei were then
computed. Four of the modifications are reported here:
long- and moderate-range changes of the NN potential in
the 1S0 partial wave; introduction of an additional NNN
potential that acts only in total isospin T � 3

2 triples;
and introduction of a NNNN potential that acts only in
T � 2 quadruples. In all cases, the complete AV18/IL2
Hamiltonian was used with the additional term.

The strong-interaction part of the AV18 NN potential
consists of one-pion exchange with the generally accepted
value of f2	=4	 � 0:075, moderate-range terms that are
associated with two-pion exchange but which have phe-
nomenologically adjusted strengths, and a short-ranged
completely phenomenological part. The potential is writ-
ten in terms of operators which can be used to produce the
potential for any partial wave. By making correlated
changes to the radial parts of the different terms, one
can change basically only the 1S0 partial wave (the next
wave changed is 1G0).

In the first such modification of the AV18, I changed
just the two-pion range part of the 1S0 partial wave, so as
to leave the theoretically well established one-pion part
unaffected. Increasing this two-pion strength by 4.9%
results in a 4n energy of �0:87�3� MeV. (The statistical
errors in Monte Carlo computed numbers are shown
in parentheses only when they exceed unity in the
last quoted digit.) As is shown by the points labeled
‘‘mod-1S0-2	’’ in Fig. 2, this changes the 1S0 phase shifts
by 12� over a large energy range and produces a bound
dineutron (the energy is �0:88 MeV, which means that 4n
can still decay into two dineutrons). These changes far
exceed those allowed by modern phase shift analysis. A
somewhat smaller change that produces a negative-energy
4n can be made by using the AV10 potential [12] in the 1S0
partial wave (and AV18 in the other partial waves); this
252501-2
results in a 4n energy of �0:52 MeV and about a 50%
smaller change in the 1S0 phase shifts (the points labeled
‘‘mod-1S0-AV10’’ in the figure). However, again 2n is
bound, this time with an energy of �0:42 MeV and the
4n is not stable against breakup into two dineutrons. Note
that the one-pion-range part of the potential is also
changed in mod-1S0-AV10. These 2n and 4n states are
quite diffuse; the rms radii are, respectively, 2.8 and
3.6 fm for the two 2n cases and 7.3 and 10.3 fm for the
4n. The 4n pair distributions have a peak containing about
two pairs with a structure close to that of the 2n pair
distribution and a long tail. Thus, the 4n looks like two
widely separated dineutrons.

As noted, these modifications of the 1S0 potential to
produce tetraneutrons with negative total energy also
produce dineutrons with about the same energies; thus,
they are physically unacceptable modifications. Figure 3
shows that they also introduce large changes to the bind-
ing energies of other nuclei; for example, 3H is 
50%
overbound and 5H is stable or almost stable against
breakup into 3H� n� n as opposed to being a resonance
in that channel [13]. Also, six and eight neutrons form
bound systems, although three and five do not. Figure 3
also shows that the base Hamiltonian we are using under-
binds 4;5H by an amount comparable to the �2 MeV
energy that was estimated for 4n; this might suggest
that fixing the Hamiltonian for these cases would result
in a bound 4n. However, as noted, the changes necessary
to bind 4n result in large overbinding for 5H; thus, a
change that fixes the 5H energy will make a very small
change to the 4n result. As discussed above, the 4H results
could have large systematic errors; the 1S0-AV10 result for
4H does not seem consistent with all the other nuclei.

The authors of Refs. [3–5] concluded that the non-
realistic Volkov potentials [14] do not bind 4n. However,
these potentials do have bound dineutrons. I made calcu-
lations using the first four Volkov potentials in all partial
252501-2
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FIG. 3. Energies of nuclei and neutron clusters computed with
the AV18/IL2 Hamiltonian with modified NN potentials
(1S0-2	 and 1S0-AV10) and with no modification (AV18),
compared with experimental values for known nuclei.
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waves and no NNN potential. These potentials indeed do
give 4n with energies of �0:91, �1:04, �0:47, and
�0:71 MeV, which are considerably more negative than
the above studies suggest. However, the 2n energies are
�0:56, �0:60, �0:35, and �0:42 MeV, respectively, so
the 4n can again decay into two dineutrons. The rms
radii of the 4n systems are all about 11.5 fm, which
may explain why these states were not discovered in
Refs. [3–5]. The variational energies for 4n with modifi-
cations to the AV18/IL2 Hamiltonian are positive; that is,
only with GFMC improvement does the energy become
negative. However, for the simpler Volkov potentials, the
�T already give negative energies and the GFMC just
improves these energies.

It must be emphasized that these almost bound 4n
results do not at all support an experimentally bound
4n. The more than 35-year-old Volkov potentials are not
realistic; they produce bound 2n, with the same binding
energies as their deuterons; they have no tensor or LS
terms; and they cannot reproduce modern phase shift
analyses in any partial wave. The one thing in their favor
is that, by having a space-exchange component, they
introduce some saturation in p-shell nuclear binding en-
ergies; however, with just one radial form they are even
simpler than the space-exchange AVX0 introduced in
Ref. [12].

The above results show that it is not possible to bind 4n
by modifying the 1S0 potential without severely disrupt-
ing other nuclear properties. The next NN possibility is
the 3PJ channel. The net effect of these is a small repul-
sion in neutron systems. Setting this term to zero had very
little effect on 4n; one would have to introduce significant
attraction to bind 4n and then again many other nuclear
properties would be unrealistically changed.

Modifications to the NNN or NNNN potentials, which
are experimentally much less constrained than the NN
potential, could be used to bind 4n. Timofeyuk added a
central NNNN potential to bind 4n, but found that it
252501-3
resulted in 4He being bound by about 100 MeV [3,5].
However, as she suggests, one should try less disruptive
things. A NNN potential that acts only in T � 3

2 triples
would have the same effect on 4n as one with no isospin
dependence, but no effect on 3H and 4He because they
contain only T � 1

2 triples. A NNNN T � 2 potential
would also not affect 5He and 6Li.

I added potentials of the forms

Vijk

�
T �

3

2

�
� V3

X
cyclic

�Y�rij�Y�rjk��P
�
T �

3

2

�
;

Vijkl�T � 2� � V4

X
cyclic

�Y�rij�Y�rjk�Y�rkl��P�T � 2�;

Y�r� �
e�m	r

m	r
�1� e��m	r�2�2;

to the AV18/IL2 Hamiltonian. Here m	 is the pion mass,
the P are projectors onto the indicated isospin states, and
V3 and V4 were chosen to produce 4n with 
� 0:5 MeV
energy. These forms have the longest range that is possible
from strong interactions; the cutoff makes the radial
forms peak at 1.55 fm. Using more confined radial forms
only increases the problems reported below.

It turns out that the couplings must be quite large to
produce the minimally bound 4n: V3 � �440 and V4 �
�4750 MeV, which result in 4n energies of �0:60�5� and
�0:55�6� MeV. This can be understood as follows. If the
NN potential is used to bind 4n, the pairs can sequentially
come close enough to feel the attraction; this allows the
four neutrons to be in a diffuse, large radius, distribution.
However, a NNN potential requires three neutrons to
simultaneously be relatively close and thus the density
of the system must be much higher. Indeed, the rms radii
of the 4n for the Vijk�T � 3

2� case is only 1.88 fm, while
that for Vijkl�T � 2� is 1.61 fm. Such small radii result in
kinetic energies that are an order of magnitude more than
those for the 4n systems bound by modified 1S0 potentials;
for the Vijk�T � 3

2� case, the expectation value of the
kinetic energy is 
87 MeV, while those of the NN and
NNN potentials are �49 and �38 MeV, respectively.
(The kinetic energy is found by subtracting GFMC po-
tential values from hHi [6].)

The very large coupling constants for the Vijk�T � 3
2�

and Vijkl�T � 2� potentials mean that they have a large,
even catastrophic, effect on any nuclear system in which
they can act. This is shown in Fig. 4; for example,
Vijk�T � 3

2� doubles the binding energy of 6Li and triples
that of 6He, while Vijkl�T � 2�, which can have no effect
on 6Li, quadruples the binding energy of 6He. As noted
before, both of these potentials have no effect on 4He.
Both potentials make 5H stable by more than 25 MeV
against 3H� n� n. However, the most dramatic result of
these potentials is that every investigated pure neutron
system with A > 4 is extremely bound and, in fact, is the
most stable ‘‘nucleus’’ of that A. For Vijk�T � 3

2� the en-
ergies are �62, �220, and �650 MeV, respectively,
252501-3
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P H Y S I C A L R E V I E W L E T T E R S week ending
27 JUNE 2003VOLUME 90, NUMBER 25
for 5;6;8n, while for Vijkl�T � 2� they are �358, �1370,
and �6690 MeV.

These enormous bindings indicate that matter will
collapse with such potentials. This is to be expected for
purely attractive many-nucleon potentials. One should add
a shorter-ranged stronger repulsion to obtain saturation.
Such a repulsion might improve the results for A  6
nuclei. I studied this by using a repulsive term with
Yukawa radial forms of range 2m	. However, in order
to get any appreciable effect on 6He, the repulsive cou-
pling has to be made quite large; this then requires at least
a doubling of the attraction to still bind 4n; this results in
potentials that are so strong that the GFMC starts to
become unreliable. The apparent impossibility of correct-
ing the A � 6 results by such a term may also be seen
from the rms radii of the 4n reported above; they are
smaller than the experimental value for 6Li and reason-
able 6He radii. Thus, a short-ranged repulsion that still
leaves the 4n bound will certainly result in A � 6 nuclei
with too small rms radii.

In all of these cases, I have made isospin-conserving
modifications to the AV18/IL2 Hamiltonian; thus, there
have been T � 1 additions to the NN potential, or a T � 3

2
addition to the NNN potential, or a T � 2 addition to the
NNNN potential. One could modify the force only for nn
pairs or nnn triples or nnnn quadruples since the nuclear
force is least well determined for such systems. Such
changes would mean much larger charge-symmetry
breaking and charge-independence breaking potentials
than are presently accepted. But even so, the changes to
the NN force, if limited to just nn pairs, would still bind
two neutrons, which would change the experimental scat-
tering length from 
� 18 fm to a positive value. Such a
nn potential would still bind 6n and 8n. I estimate that it
would still increase the binding of 3H by 3 MeV while it
would have no effect on 3He. Thus, the Nolen-Schiffer
energy for the A � 3 system would be some 5 times too
252501-4
large. Many of the devastating effects shown in Fig. 4
would similarly persist even if the potentials were limited
to nnn triples or nnnn quadruples.

The GFMC method is presently limited to local poten-
tials while meson-exchange potentials may contain sig-
nificant nonlocalities; thus, one might wonder if nonlocal
NN potentials could produce a bound 4n without binding
2n. As discussed, the negative-energy 4n produced by
modifying the NN force have very large ( > 7 fm) rms
radii and consist of dineutrons with rms radii of 
3 fm.
These are much larger than the distances over which
nonlocalities are significant, so the limitation to local
potentials should not matter.

In conclusion, should the results of Ref. [1] be con-
firmed (Ref. [2] contains additional considerations of
background in these types of experiments), our current
very successful understanding of nuclear forces would
have to be severely modified in ways that, at least to
me, are not at all obvious.
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