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We propose and investigate a realization of the position- and momentum-correlated Einstein-
Podolsky-Rosen (EPR) states [Phys. Rev. 47, 777 (1935)] that have hitherto eluded detection. The
realization involves atom pairs that are confined to adjacent sites of two mutually shifted optical lattices
and are entangled via laser-induced dipole-dipole interactions. The EPR ‘‘paradox’’ with translational
variables is then modified by lattice-diffraction effects and can be verified to a high degree of accuracy
in this scheme.
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condensates [13] has been investigated extensively. one used to trap the atoms in the lattice. The auxiliary
The ideal Einstein-Podolsky-Rosen (EPR) [1] state of
two particles—1 and 2, is, respectively, represented in
their coordinates or momenta (in one dimension), as
follows:

hx1; x2 j  EPRi � ��x1 � x2�; (1)

hp1; p2 j  EPRi � ��p1 � p2�: (2)

The paradox is in the fact that given the measured values
of x1 or p1 of particle 1, one can predict the measurement
result of x2 or p2, respectively, with arbitrary precision,
unlimited by the Heisenberg relation �x2�p2 	 �h=2. In
other words, the ideal EPR state is fully entangled in the
continuous translational variables of the two particles.
Approximate versions of this translational EPR state,
wherein the �-function correlations are replaced by fi-
nite-width distributions, have been shown to characterize
the quadratures of the two optical-field outputs of para-
metric downconversion [2,3] and allow for optical
continuous-variable teleportation [4]. More recently,
translational EPR correlations have been analyzed be-
tween dissociation fragments of homonuclear diatoms
[5], whereas interacting atoms in Bose-Einstein conden-
sates have been shown to possess translational-internal
correlations [6]. Yet the fact remains that the original EPR
state has eluded detection for nearly 70 years. Our goal is
twofold: (i) propose an experimentally feasible scheme
for the creation of translational EPR correlations between
cold atoms that are confined in optical lattices [7] and
coupled by laser-induced dipole-dipole interactions
(LIDDI) [8–10]; (ii) study the qualitative modifications
of such correlations due to particle diffraction in lattices,
which have been hitherto unexplained. The LIDDI has
been proposed as a means of two-atom entanglement via
their internal states, for quantum logic applications [11].
The ability of LIDDI to influence the spatial and momen-
tum distributions of cold atoms in cavities [12], traps, and
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To realize and measure the EPR translational correla-
tions of material particles, one must be able to accomplish
several challenging tasks: (a) switch on and off the en-
tangling interaction; (b) confine their motion to single
dimension, and (c) infer and verify the dynamical vari-
ables of particle 2 at the time of measurement of particle 1.
The latter requirement is particularly hard for free par-
ticles, since by the time we complete the prediction for
particle 2, its position will have changed. In [5] we
suggested to overcome these hurdles by transforming
the wave function of a flying (ionized) atom by an electro-
static and/or magnetic lens onto the image plane, where
its position corresponds to what it was at the time of the
diatom dissociation. In this Letter we propose a different
solution: (a) controlling the diatom formation and disso-
ciation by switching on and off the LIDDI; (b) controlling
the motion and effective masses of the atoms and the
diatom by changing the intensities of the lattice fields.

System specification.—Let us assume two overlapping
optical lattices with the same lattice constant a, as in
Fig. 1. The lattices are very sparsely occupied by two
kinds of atoms, each kind interacting with only one of
the two lattices. This can be realized, e.g., by assuming
two different internal (say, hyperfine) states of the atoms
[11]. For both lattices, the y and z directions are very
strongly confining (realized by strong laser fields),
whereas in the x direction the lattice can be varied from
moderately to weakly confining. Thus, the motion of each
particle is confined to the x direction. For each direction
we assume that only the lowest vibrational energy band is
occupied. Initially, the potential minima of the lattices
are displaced from each other by an amount l
 a in the
y direction. This enables us to couple the atoms of the two
lattices, along y using an auxiliary laser to induce the
LIDDI. We assume the auxiliary laser to be a linearly
polarized traveling wave with wavelength 
C, moderately
detuned from an atomic transition that differs from the
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FIG. 1. Proposed scheme of the translational EPR: two over-
lapping optical lattices displaced from each other in the y
direction by l are sparsely occupied by two kinds of atoms.
Each of the two kinds of atoms feels a different lattice; the
shaded regions depict the energy minima (potential wells) of
the lattices.
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laser propagates in the x direction and its electric field is
polarized in the y direction. The LIDDI potential for two
identical atoms has the form [8]

Vdd �� VCF��kR�; F��kR� � cos�kR cos��

�

�
�2� 3cos2��

�
coskR

�kR�3
�
sinkR

�kR�2

�

� cos2�
coskR
kR

�
: (3)

Here VC � �2k3IC=�4��20c�, where k � 2�=
C, IC is the
coupling laser intensity, and the atomic dynamic polar-
izability is� � 2!Aj�j2=� �h�!2A �!2�
, with� being the
dipole moment element, !A the atomic transition fre-
quency, and ! � kc. The position-dependent part
F��kR� is a function of R, the distance between the atoms,
and �, the angle between the interatomic axis and the
wave vector of the coupling laser. Since l
 2a, Vdd�R�
has a pronounced minimum for atoms located at the
nearest sites, R ’ l, where Vdd�R� ’ �VC�
C=l�3=�4�3�.
Under these assumptions, we can treat the system as
consisting of pairs of ‘‘tubes,’’ that are oriented along x,
either empty or occupied. Only atoms within adjacent
tubes are appreciably attracted to each other along y,
due to the LIDDI.

EPR states.—We now focus on the subensemble of tube
pairs in which each tube is occupied by exactly one atom.
In the absence of LIDDI, the state of each atom can be
described in terms of the Wannier functions j�ji [14] that
are localized at lattice sites with index j and may hop to
the neighboring site at the rate Vhop= �h, where Vhop �
h�jjĤHlatj�j�1i, and ĤHlat is the lattice Hamiltonian. In
a 1D lattice, ĤHlat � �U0=2� cos�2�x=a� � p̂p2x=�2m�, m
being the atomic mass. The hopping rate is related to
the energy bandwidth of the lowest lattice band VB by
VB � 4jVhopj (for exact expressions see [15]). For a shal-
low lattice potential (U0 & 15Erec) we may use the ap-
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proximate formula Vhop � Erec exp��0:26U0=Erec�, where
the recoil energy is Erec � 2�2 �h2=�m
2L�.

Let us switch on the LIDDI, so that jVhopj 
 jVddj.
Then the ground state of such a tightly bound diatom
can be approximated by j 0i /

P
jj�

�1�
j ij��2�

j i. This means
that when particle 1 is found at the jth site of lattice 1,
then particle 2 is found at the jth site of lattice 2, with
position dispersion given by the half-width " of the
atomic (Gaussian-like) Wannier function in the lowest
band, "2 � �h
L=�4�

����������
mU0

p
�. To next order in Vhop=Vdd,

the nonzero probability of atoms to be located at more
distant sites changes the diatomic position (separation)
dispersion to �x2� � "2 � 2a2�Vhop=Vdd�2.

The states of the tightly bound diatom form a separate
band whose bandwidth is V�2at�

B � 4jV�2at�
hop j, below the

lowest atomic vibrational band. The diatomic hopping
potential V�2at�

hop can be found by assuming that the two
atoms consecutively hop to their neighboring sites, i.e.,

the state change j��1�
j ij��2�

j i ! j��1�
j�1ij�

�2�
j�1i is realized

either via j��1�
j ij��2�

j i ! j��1�
j�1ij�

�2�
j i ! j��1�

j�1ij�
�2�
j�1i, or

via j��1�
j ij��2�

j i ! j��1�
j ij��2�

j�1i ! j��1�
j�1ij�

�2�
j�1i. By adia-

batic elimination of the higher-energy intermediate states
one obtains V�2at�

hop � 2V2hop=Vdd.
To realize a momentum anticorrelated EPR state, the

temperature of the system must satisfy kBT 
 V�2at�
B . The

dependence of the momentum anticorrelation on tempera-
ture is given by �p2�=�2m

�2at�
eff 
 � 1

2 kBT, where we have
introduced the sum-momentum spread �p� and (analo-
gously to atomic effective mass [15]) the two-atom effec-
tive massm�2at�

eff � �2 �h2=V�2at�
B a2� � � �h2jVddj=4V2hopa

2�.We
then obtain �p2� � � �h2jVddj=4V2hopa

2�kBT.
Although the values �x2� and �p2� estimated above

refer to the respective peak widths, they principally differ
from the position and momentum uncertainties of free
particles: due to the lattice periodicity, the position and
momentum distributions have generally a multipeak
structure. The two-particle joint position distribution of
the ground state is a chain of peaks of half-width "
separated by a; the peaks are located along the line x2 �
x1 (Fig. 2). The corresponding joint momentum distribu-
tion spreads over an area of half-width �h=�2"� and con-
sists of ridges in the direction p2 � �p1. These ridges
are separated by 2� �h=a, and for a lattice of N sites, the
half-width of each ridge is � �h=�Na� (Fig. 3).

To evaluate how ‘‘strong’’ the EPR effect is, we com-
pare the product of the half-widths of the position and
momentum peaks in the tightly bound diatom state
described above with the limit of the Heisenberg
uncertainty relations,�x�p 	 �h=2, defining the parame-
ter s [5]:

s �
�h

2�x��p�

: (4)

Avalue of s higher than 1 indicates the occurrence of the
EPR effect; the higher the value of s, the stronger the
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FIG. 2. Joint probability distribution of the positions of two
lithium atoms in adjacent optical lattices, prepared in a diatom
state as specified in the text, using the ground state of the
external harmonic potential with half-width of "E � 6a and
temperature of 10 nK. Inset: Position probability of atom 2 in
the state above, conditional on atom 1 being measured at site 0
(solid line). Dashed line: Gaussian approximation of the
Wannier function with the half-width " � 0:14a.
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effect. Strictly speaking, because of the multipeak mo-
mentum distribution, one should not use the original form
of Heisenberg uncertainty relations but a more general
relation, as discussed, e.g., in [16], that distinguishes the
uncertainty of a few narrow peaks from that of a single
broad peak. However, even the simple half-width of the
peaks is a useful measure of the EPR effect. In order to
maximize s, we must adhere to the trade-off between
making �x� as small as possible, by decreasing
jVhop=Vddj, and making �p� as small as possible, by
increasing jVhop=Vddj. The optimum value of s generally
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FIG. 3. Conditional probability of the momentum of atom 2
after the momentum of atom 1 has been measured for lithium
diatoms prepared as in the text (the measured value p1 � p1M
is indicated with an arrow). The dashed line corresponds to the
marginal probability distribution of momentum p2 irrespective
of the momentum of atom 1 at the temperature T � 100 nK.
The half-width of each peak is equal to 1=s of Eq. (4). Inset:
joint probability distribution of the atomic momenta in the state
above with T � 100 nK.
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depends on the lowest available temperature of the dia-
tom, as detailed below.

EPR state preparation.—Cooling down the diatomic
system to prepare the EPR state is a nontrivial task. We
suggest to attack the problem by a three-step approach. (i)
Let us switch off both the LIDDI and the x lattices, switch
on an external, shallow, harmonic potential in the x
direction, and cool the x motion of the atoms down to
the ground state of the external potential. The width "E
of the ground state should be several times the
lattice constant; it is related to the desired momentum
anticorrelation by "E � �h=�

���
2

p
�p��. The tempera-

ture must be T 
 �h2=�4mkB"2E�. (ii) A weak lattice po-
tential in the x direction is then slowly switched on,
so that the state becomes � �

P
j�jj�

�1�
j i��

P
l�lj�

�2�
l i� �P

j�
2
j j�

�1�
j ij��2�

j i �
P
j�l�j�lj�

�1�
j ij��2�

l i, where the coef-
ficients �j � exp���j� j0�2a2=�4"2E�
 are Gaussians lo-
calized around the minimum of the external potential.
(iii) We switch on the LIDDI and change the sign of
the external potential, from attractive to repulsive, acting
to remove the particles from the lattice. The two parts of
the wave function would behave in different ways. The
paired atoms, corresponding to the part of the wave
function

P
j�

2
j j�

�1�
j ij��2�

j i, move slowly because of their
large effective mass m�2at�

eff , whereas single (unpaired)
atoms, because of their smaller effective mass, meff 

m�2at�
eff � jVddj=�2Vhop�meff , are ejected out of the lattice

and separated from the diatoms as glumes from grains.
The paired atoms remaining in the lattice are then in the
state � exp���j� j0�2a2=�2"20�
j�

�1�
j ij��2�

j i, wherein po-
sitions are anticorrelated with uncertainty�x� � "E=

���
2

p

and momentum uncertainty �p� � �h=�x�. At higher
temperatures the atoms are not cooled to the ground state
of the external potential and the momentum anticorrela-
tion becomes �p� � �h=f

���
2

p
"E tanh� �h2=�2"2EmkBT�
g.

The parameter s of Eq. (4) can then be estimated as

s �
"E���
2

p
"
tanh

�
1

�2

�
a
"E

�
2Erec
kBT

�
: (5)

This equation enables us to select the optimum external
harmonic potential (specified here by "E) such that the
parameter s is maximized, under the constraint of the
lowest achievable temperature T.

The small effective mass of unpaired atoms allows us
to cool them individually, restricting their cooling to
temperatures higher than that corresponding to the bot-
tom of the diatomic band. The price is, however, that most
of the atoms are discarded and only a small fraction
remains in the diatom state. Specifically, out of the total
number of tube pairs occupied by two atoms, a fraction of
�a="E will remain in the bound diatom state. The differ-
ent behavior of the paired vs unpaired atoms in a periodic
potential is a sparse-lattice analogy of the Mott insulator
vs superfluid state of the fully occupied lattice, recently
observed in Ref. [17].
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Measurements.—After preparing the system in the
EPR state, one can test its properties experimentally. To
this end we may increase the lattice potential U0, switch
off the field inducing the LIDDI, and separate the two
lattices by changing the laser-beam angles. By increasing
U0, the atoms lose their hopping ability and their quan-
tum state is ‘‘frozen’’ with a large effective mass: the
bandwidth VB decreases exponentially with U0 and the
effective mass increases exponentially, so that the atoms
become too ‘‘heavy’’ to move. One has then enough time
to perform measurements on each of them.

The atomic position can be measured by detecting its
resonance fluorescence. After finding the site occupied by
atom 1, one can infer the position of atom 2. If this
inference is confirmed in a large ensemble of measure-
ments, it would suggest that there is an ‘‘element of
reality’’ [1] corresponding to the position of particle 2.
The atomic momentum can be measured by switching off
the x-lattice potential of the measured atom (thus bring-
ing it back to its ‘‘normal’’ mass m): the distance trav-
ersed by the atom during a fixed time is proportional to its
momentum. One can test the EPR correlations between
the atomic distributions occupying the two lattices: a
large number of pairs would be tested in a single run.
The correlations in x and anticorrelations in p would be
observed by matching the distribution histograms mea-
sured on particles from the two lattices.

Example.—We consider two lithium atoms in two lat-
tices with 
L � 323 nm (corresponding to the transition
2s-3p) and a dipole-dipole coupling field of 
C �
670:8 nm (transition 2s-2p). The field intensities are IL �
0:35 W=cm2 and IC � 0:1 W=cm2, and the field detun-
ings are �L � 50&L, �C � 100&C, the decay rates being
&L � 1:2� 106 s�1, and &C � 3:7� 107 s�1. The two
lattices are displaced by l � 40 nm. From these values
we get the lattice potential U0 � 7:42Erec, the dipole-
dipole potential of the nearest atoms Vdd � �2:16Erec,
and the hopping potential Vhop � �0:0355Erec. The two-
particle hopping potential is then V�2at�

hop � �0:0012Erec
and the ratio of effective masses of a diatom and a of a
single atom is m�2at�

eff =meff � 30. The position uncertainty
of atom 2, after position measurement of atom 1, is then
�x� � " � 0:136a � 22 nm (see Fig. 2). The correlated
pairs are prepared by first cooling independent atoms in
an external harmonic potential with the ground-state
half-width of "E � 6a (frequency of 1.2 kHz �33 nK).
After the unpaired atoms are removed from the lattice,
we calculate the momentum distribution for two different
temperatures, 10 and 100 nK. The conditional probability
of momentum p2 of particle 2, provided that the momen-
tum of particle 1 was measured as p1M, is plotted in Fig. 3.
The resulting half-widths of the peaks can be used to find
the parameter s; we have s � 30 for T � 10 nK and s �
11 for T � 100 nK. Note that in current optical experi-
ments [3] s & 4.

To sum up, the proposed scheme is based on the adap-
tation of existing techniques (optical trapping, cooling,
250404-4
controlled dipole-dipole interaction) to the needs of
atom-atom translational entanglement. The most impor-
tant feature of the scheme is the manipulation of the
effective mass, both for the EPR-pair preparation (by
separating the ‘‘light’’ unpaired atoms from the heavy
diatoms) and for their detection (by ‘‘freezing’’ the atoms
in their initial state so that their EPR correlations are
preserved long enough). This scheme has the capacity of
demonstrating the original EPR effect for positions and
momenta, as discussed in the classic paper [1]. A novel
element of the present scheme is the extension of the EPR
correlations to account for lattice-diffraction effects.
Applications of this approach to matter teleportation [5]
and quantum computation with continuous variables [18]
can be envisioned. The fact that our system represents a
blend of continuous and discrete variables may be utilized
for quantum information processing (to be discussed
elsewhere).

We acknowledge the support of the U.S.-Israel BSF,
Minerva and the EU Networks QUACS and ATESIT.
[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47,
777 (1935).

[2] M. D. Reid and P. D. Drummond, Phys. Rev. Lett. 60,
2731 (1988).

[3] Z.Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, Phys.
Rev. Lett. 68, 3663 (1992).

[4] S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80,
869 (1998).
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