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Roton-Maxon Spectrum and Stability of Trapped Dipolar Bose-Einstein Condensates
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We find that pancake dipolar condensates can exhibit a roton-maxon character of the excitation
spectrum, so far observed only in superfluid helium. We also obtain a condition for the dynamical
stability of these condensates. The spectrum and the border of instability are tunable by varying the
particle density and/or the confining potential. This opens wide possibilities for manipulating the

superfluid properties of dipolar condensates.
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Recent progress in cooling and trapping of polar mole-
cules [1,2] opens fascinating prospects for achieving
quantum degeneracy in trapped gases of dipolar particles.
Being electrically or magnetically polarized, polar mole-
cules interact with each other via long-range anisotropic
dipole-dipole forces. This makes the properties of such
dipolar gases drastically different from the properties of
commonly studied atomic cold gases, where the interpar-
ticle interaction is short range. Other candidates to form a
dipolar gas are atoms with large magnetic moments [3,4],
and atoms with dc-field- [5] or light-induced electric
dipole moments [6—8].

The dipole-dipole interaction is responsible for a vari-
ety of novel phenomena in ultracold dipolar systems. The
energy independence of the dipole-dipole scattering am-
plitude for any orbital angular momenta provides realistic
possibilities for achieving a superfluid BCS transition in
single-component dipolar Fermi gases (see [9] and refer-
ences therein). Dipolar bosons in optical lattices have
been shown to provide a highly controllable environment
for engineering various quantum phases [10]. In addition
to superfluid and Mott-insulator ones, recently observed
in Munich experiments [11] with bosonic atoms, the long-
range dipole-dipole potential provides supersolid and
checkerboard phases. Dipole-dipole interactions are also
responsible for spontaneous polarization and spin waves
in spinor condensates in optical lattices [12], and may
lead to self-bound structures in the field of a traveling
wave [13]. Recently, dipolar particles have been consid-
ered as promising candidates for the implementation of
fast and robust quantum-computing schemes [8,14].

The long-range and anisotropic (partially attractive)
character of dipole-dipole forces ensures a strong depen-
dence of the stability of trapped dipolar Bose-Einstein
condensates (BECs) on the trapping geometry [7]. For
cylindrical traps with the aspect ratio /,/1, > I, = 0.43,
a purely dipolar condensate is dynamically unstable if the
number of particles N exceeds a critical value. A detailed
study of the excitation modes for this geometry is con-
tained in Ref. [15]. It has also been argued in Ref. [7] that
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in pancake traps with /,/1, < I, the ground state solution
is expected for any N.

In this Letter we analyze the nature of excitations and
instability of pancake-shaped dipolar condensates. For
this purpose, we consider the physically transparent
case of an infinite pancake trap, with the dipoles perpen-
dicular to the trap plane. For the maximum condensate
density ng — oo, the dynamical stability requires the
presence of a sufficiently large short-range repulsion, in
addition to the dipole-dipole interaction. Otherwise, if n
exceeds a critical value n,, excitations with certain
(large) in-plane momenta g become unstable. At densities
n < n. the excitation spectrum has a roton-maxon form
(see Fig. 1) similar to that in superfluid helium.

The roton-maxon spectrum for helium has been sug-
gested by Landau [16], and later Feynman [17] related the
excitation energy to the static structure factor of the
liquid. The roton minimum originates from the fact that
at intermediate momenta one has a local structure pro-
duced by the tendency of atoms to stay apart. The pancake
dipolar condensate is the first example of a weakly inter-
acting gas, where the spectrum has a roton-maxon form
[18]. We emphasize that the roton-maxon spectrum finds
its origin in the momentum dependence of the interpar-
ticle interaction. In this sense, it is a general physical
phenomenon that should be present in any weakly inter-
acting gas with a similar momentum dependence of the
interparticle interaction (scattering amplitude).

In an infinite pancake trap the roton-maxon spectrum
allows a transparent physical interpretation. For in-plane
momenta ¢ much smaller than the inverse size L of the
condensate in the confined direction, excitations have
two-dimensional (2D) character. Hence, as the dipoles
are perpendicular to the plane of the trap, particles effi-
ciently repel each other and the in-plane excitations are
phonons. For g > 1/L, excitations acquire 3D character
and the interparticle repulsion is reduced. This decreases
the excitation energy under an increase of g. The energy
reaches a minimum and then starts to grow as the ex-
citations continuously enter the single-particle regime.

© 2003 The American Physical Society 250403-1



VOLUME 90, NUMBER 25 PHYSICAL REVIEW LETTERS Zyﬁ%(l\?gdzig(g)fﬁ

30 3.0
25t (@) 251 (B

20

o 15
ol e
05

% 05 L0 15 2.0 0 05 1.0 15 20

al

FIG. 1.

ql,

Dispersion law €,(q) for (a) 8 = 1/2, u/hw = 343; (b) B = 0.53, u/hw = 46 (upper curve) and B8 = 0.47, u/hw = 54

(lower curve). The solid curves show the numerical results, and the dotted curves the result of Eq. (9).

The minimum energy is zero for the maximum density 7,
equal to a critical value. At higher densities, excitations
with momenta ¢ in the vicinity of this minimum become
unstable and the condensate collapses. Below we find the
condensate wave function, excitation spectrum, and the
conditions for both rotonization and instability.

We consider a condensate of dipolar particles harmoni-
cally confined in the direction of the dipoles (z) and
uniform in two other directions (p = {x, y}). The dynam-
ics of the condensate wave function #(r, ¢) in this infinite
pancake trap is described by the time-dependent Gross-
Pitaevskii (GP) equation (see [7] and references therein),

2
i (1) = {—f—mA + 2w + gl 0P
b j eV ,(r — 1) (e, t)|2}l,b(r, ),

D

where w is the confinement frequency, m is the particle
mass, and d the dipole moment. The wave function ¢(r, )
is normalized to the total number of particles. The third
term in the right-hand side (rhs) of Eq. (1) corresponds to
the mean field of short-range (van der Waals) forces, and
the last term to the mean field of the dipole-dipole inter-
action. The coupling constant for the short-range inter-
action is g, and V,;(7) = (1 — 3cos?6)/r’ is the potential
of the dipole-dipole interaction, with 6 being the angle
between the vector 7 and the direction of the dipoles (z).

The ground state wave function is independent of
the in-plane coordinate p and can be written as
o(z) exp(—iwt), where w is the chemical potential.
Then, integrating over dp’ in the dipole-dipole term of
Eq. (1), we obtain a one-dimensional equation similar to
the GP equation for short-range interactions:

ﬁ2

{— %A + %wzz2 + (g + g)¥5(z) — M}%(Z) =0,
()

where g, = 87d?/3. We will discuss the case of (g +
g4) > 0, where the chemical potential w is always posi-
tive. For u > hw the condensate presents a Thomas-
Fermi (TF) density profile in the confined direction:
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¢(2)(Z) = n()(l - Zz/Lz)s with ny = IU“/(g + gd) being the
maximum density, and L = (2u/mw?)'/? the TF size.
Linearizing Eq. (1) around the ground state solution
o(z) we obtain the Bogoliubov—de Gennes (BdG) equa-
tions for the excitations. Those are characterized by the
momentum q of the in-plane free motion and by an
integer quantum number (j = 0) related to the motion
in the z direction. The excitation wave functions take the
form f.(z) exp(iqp), where f~ = u * v, and u, v are the
Bogoliubov {u, v} functions. Then the BdG equations read

Ao

ﬁz[_d2+ -
@ +——
0

- =l a2

}er = Hyf+, (3

€f+ = Hgnf- + Hyulf-] 4

where Hy;, is the sum of kinetic energy operators, and
Hi[f-1=2(g4 + &)f-(2)95(2)
6/ [ d @) )
X exp(—glz — Z/|).

For each j we get the excitation energy €; as a function of
qg. We will be mostly interested in the lowest excitation
branch €,(g) for which the confined motion is not excited
in the limit ¢ — 0.

The second term in the rhs of Eq. (5) originates from
the nonlocal character of the dipole-dipole interaction
and gives rise to the momentum dependence of an effec-
tive coupling strength. In the limit of low in-plane mo-
menta gL < 1, this term can be omitted. In this case,
excitations of the lowest branch are essentially 2D and the
effective coupling strength corresponds to repulsion.
Equations (3) and (4) become identical to the BdG equa-
tions for the excitations of a trapped condensate with a
short-range interaction characterized by a coupling con-
stant (g + g4) > 0. In the TF regime for the confined
motion, the spectrum of low-energy excitations for this
case has been found by Stringari [19]. The lowest branch
represents phonons propagating in the x, y plane. The
dispersion law and the sound velocity c, are given by
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¢y = 2u/3m)'/2, (6)

For gL > 1, the excitations become 3D and the effec-
tive coupling strength decreases. The interaction term is
then reduced to Hiy[f-1= 2g — g,)¥3(2)f-(2); as in
the integrand of Eq. (5) one can put z/ = z in the argu-
ments of f_ and ¢. In this case, Egs. (3) and (4) are
similar to the BdG equations for the excitations of a
condensate with short-range interactions characterized
by a coupling constant (2g — g,). If the parameter 8 =
g/gq > 1/2, this coupling constant is positive and one
has excitation energies which are real and positive for any
momentum g and condensate density n,. For 8 < 1/2, the
coupling constant is negative and one easily shows that at
sufficiently large density the condensate becomes un-
stable. For collective excitations in the TF regime at
ng — 0, kinetic energy terms in Eq. (4) can be omitted,
anditreads ef . = (2g — g4)no(z)f_. Then, rescaling the
excitation energies as € = &(2g — g,)/(g + g4), Eqs. (3) |

LW 3 AW
ZET PN W
dx2 < 2(1+/3)>x dx} @

where E, = hi*q?/2m. Here we omitted terms of the order
of E,i*w?/p and h*w*/u?, since they are small com-
pared to either i*w? or E5.

For each mode of the confined motion (each quantum
number j), the solution of Eq. (7) can be written as series
of expansion in Gegenbauer polynomials C}(x), where
A= (4+ B)/2(1 + B), and n = 0 is an integer. The cou-
pling between polynomials of different power is provided
by the term proportional to (28 — 1)(1 — x*)W. For the
critical value 8 = 1/2 the coupling is absent, and we then
obtain W; « Cj‘(x). The dispersion law is characterized
by a plateau [see Fig. 1(a)], and for the jth branch of the
spectrum it is given by

€olq) = licyq;

Bu—ﬁ>

€i(q) = E; + BPo?[1 + j(j + 3)/2]. 8)

For B # 1/2, assuming that the coupling term
wE 28 —1]/(1 + B) = h*w? and it does not signifi-
cantly modify the eigenfunctions, we can still confine
ourselves to the perturbative approach. Then, as the poly-
nomials C? are orthogonal with the weight (1 — x*)*~1/2,
for the lowest branch of the spectrum we obtain

2B — D5 +2p)
31+ B2+ pB)

From Eq. (9) one sees two types of behavior of the
spectrum. For B > 1/2 the excitation energy monoto-
nously increases with g [see Fig. 1(b)]. If 8 < 1/2, then
the dispersion law (9) is characterized by the presence of
a minimum. Since in the limit of gL < 1 the energy ¢
grows with ¢, the existence of this minimum indicates
that the spectrum as a whole should have a roton-
maxon character [see Fig. 1(b)]. This behavior is known
from the physics of liquid helium. As discussed above, in

250403-3

€’(q) = E; +

E,pu + A w?. 9

62_E2

and (4) give the eigenmode equation &> f, =2(g +
ga)no(2)Hyinf+ for positive excitation energies € in the
case of short-range repulsive interaction with the cou-
pling constant (g + g,). Thus, for 8 <1/2 we obtain
€2 <0 and imaginary €, which indicates dynamical in-
stability of the condensate with regard to these high-
momentum excitations.

We thus see that the most interesting behavior of the
excitation spectrum in the TF regime is expected for
gL > 1 and B close to the critical value 1/2. In our
analytical analysis we first reduce Eqgs. (3) and (4) to
the equation for the function W defined by the relation
f+ = W1 — x*, where x = z/L. Expressing the func-
tion f_ through W from Eq. (3), we substitute it into
Eq. (4) and integrate straightforwardly over dz’ in
Hi,[f_] as the main contribution to the integral comes
from a narrow range of distances |z’ — z| ~ 1/¢. This
yields

3h2w?

21 _
2(1 + B)

T 1+B

WE,(1 - 3?) }W —0 @

| our case it is related to the reduction in the coupling
strength with an increase of momentum, resulting from
the transformation of the character of excitations from
2D to 3D.

As follows from Eq. (9) for B close to 1/2, the roton
minimum is located at ¢ = (16u8/15kw)'/21/1,, where
86 =1/2— B,and l, = (h/mw)"/? is the harmonic oscil-
lator length for the confined motion. The excitation en-
ergy at this point is €, = [i2w? — (8u8/15)*]"/2. An
increase of the density (chemical potential) or & makes
the roton minimum deeper. For ud/hw = 15/8 the
minimum energy reaches zero at ¢ = +/2/l,. At larger
values of u8/hiw one gets imaginary excitation energies
for g ~ 1/1,, and the condensate becomes unstable.

We have then found the excitation spectrum numeri-
cally from Egs. (3) and (4) for various values of 8 and
u/hw. The results for the TF regime and B close to 1/2
are presented in Fig. 1, where one sees a good agreement
between the numerics and analytics. The discrepancy is
mainly due to the neglect of the border effects and some
of the kinetic energy terms when obtaining Eq. (7) from
Egs. (3) and (4). A similar behavior of the spectrum is
observed for non-TF condensates. In this case, due to a
large kinetic energy in the confined direction, the stabil-
ity of the condensate does not require as strong a short-
range repulsive coupling strength as in the TF regime.
Accordingly, the rotonization of the spectrum and
the instability appear at smaller values of B. These
critical B have been calculated numerically as functions
of w/hw and are shown in Fig. 2.

The dipolar condensate is the first example of a weakly
interacting gas offering a possibility of obtaining a roton-
maxon dispersion, up to now observed only in the rela-
tively more complicated physics of liquid He. In contrast
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FIG. 2. Critical values of B for the rotonization (filled
squares) and for the instability (hollow squares) versus u/hw.

to the helium case, the rotonization in dipolar conden-
sates is tunable. By varying the density, the frequency of
the tight confinement, and the short-range coupling, one
can manipulate and control the spectrum, making the
roton minimum deeper or shallower. One can also elimi-
nate it completely and get the Bogoliubov-type spectrum
or, on the opposite, reach the point of instability.

The instability of dipolar condensates with regard to
short-wave excitations is fundamentally different from
the well-known instability of condensates with attractive
short-range interaction (negative scattering length). In the
latter case the chemical potential is negative and the
ground state does not exist. The unstable excitations are
long wave, and an infinitely large cloud undergoes local
collapses. For the dipolar BEC the chemical potential is
positive and the instability is related to the momentum
dependence of an effective coupling strength. The un-
stable excitations become the ones with high momenta
at which the coupling is attractive. The existence of the
roton minimum at a given 8 < 1/2 for u/hiw just below
the point of instability is likely to indicate that there is a
new ground state in the region of the condensate insta-
bility. The presence and character of this state will be a
subject of our future studies.

The presence of the roton minimum in the excitation
spectrum can be observed in Bragg-spectroscopy experi-
ments [20] or in measurements of the critical superfluid
velocity [21]. According to the Landau criterion [22], the
critical velocity v, is equal to the minimum value of
€0(gq)/ g, and the presence of the roton minimum strongly
reduces v.. Even in the absence of rotonization, a de-
crease in the slope of the dispersion curve at large mo-
menta leads to a significant reduction of the critical
velocity.

In conclusion, we have found that pancake dipolar
condensates can exhibit a roton-maxon character of the
excitation spectrum. The presence, position, and depth of
the roton minimum are tunable by varying the density,
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confining potential, and the short-range coupling
strength. This opens new handles on manipulations of
superfluid properties of trapped condensates.
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