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Dimer State of Spin-1 Bosons in an Optical Lattice
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We consider spin-1 bosons, such as 23Na, trapped in an optical lattice, in the regime of one particle
per site. We argue that the ground state is expected to be the dimer phase in one, two, or three
dimensions, thus realizing a state that has so far been studied only theoretically.
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effective Hamiltonian for our system can be written although the total spin of an ion can be larger than 1=2
Tremendous progress has been made recently on trap-
ping and cooling atoms. Greiner et al. [1] have succeeded
in observing the bosonic Mott-Hubbard transition. In the
experiment, the bosons involved are 87Rb atoms and the
lattice potential is provided by the standing waves of
three orthogonal laser beams. For weak lattice potentials,
the system remains a superfluid (Bose-Einstein conden-
sate). When the lattice potential is increased beyond a
critical strength, the tunneling rate for atoms between the
different wells becomes weak compared with the repul-
sion for two atoms residing in the same well; the system
enters into the Mott regime. In this case the number of
atoms in each well is essentially fixed at an integer
value (here, 1). Phase coherence and hence superfluidity
is lost [2,3].

The 87Rb atoms in the experiment of Greiner et al. [1]
were hyperfine spin-polarized. In this Letter, we discuss
the interesting physics that can be realized if 23Na atoms
are employed instead of 87Rb and if the atoms are not
polarized. Bose-Einstein condensation of unpolarized
23Na has already been achieved by the MIT group [4].
The 23Na atoms have hyperfine spin (hereafter simply
‘‘spin’’) 1 in their lower energy manifold, and the inter-
action among them is antiferromagnetic [4,5] (in contrast
to 87Rb, where it is ferromagnetic). We confine ourselves
to the Mott regime where there is essentially one atom per
cell and discuss the arrangement of the hyperfine spin
states (or, more precisely, the projections) for the atoms in
this lattice. We argue that the ground state is expected to
be the dimer phase in one, two, or three dimensions. This
is in contrast with spin-1 electronic systems where the
effective Hamiltonian is the antiferromagnetic Heisen-
berg model. There in one dimension, the system would be
in the Haldane phase, whereas long range Néel order is
expected to be present in two and three dimensions [6].

Consider then a (cubic) lattice formed by three or-
thogonal laser beams, with effective potential for the
23Na atoms of the form V�x; y; z� � Vxsin

2�kx� �
Vysin2�ky� � Vzsin2�kz�, where k � 2�

� is the wave vector
of the lasers. The strength Vx;y;z of the sinusoidal poten-
tials is proportional to the intensities of the laser beams
and can be adjusted separately. As in Ref. [3] we assume
that only one orbital state is involved for each well. The
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in a Bose-Hubbard form [3] (generalized to bosons with
spin). The hopping matrix elements tx;y;z are dependent
on the directions of hopping. The order of magnitude
of tx is given by jtxj � �ERVx�1=2e�2�Vx=ER�1=2 , where ER �
h2k2=2m and m is the mass of the atoms. Though we are
considering one particle per well, the system can exist in
excited states where the wells are multiply occupied. We
confine ourselves to the regime where these energies are
large compared with the hopping energies jtx;y;zj. Thus we
need consider only those excited states with at most two
particles per well. The extra energy is described by the
Hubbard repulsion US which depends on the total spin S
of the two particles involved. US � �ERVxVyVz�

1=4kaS,
where aS is the scattering length in total spin S � 0; 2
channel. Excited states with S � 1 are not allowed due to
the identity of the bosons with one orbital state per well.

We next construct, in the standard manner, the effec-
tive Hamiltonian for the spins in the subspace of exactly
one particle per well, assuming jtj 	 U0;2 (	 the excited
energies ��ERVx;y;z�1=2 of higher orbital states in the
wells: this latter inequality is typically satisfied since
aS 	 � [3]). Let us first consider two sites, labeled by 1
and 2. For t! 0 the energy is independent of the spin
configurations. For finite but small t, we can perform
perturbation in t. It is convenient to classify the states
according to the total spin Stot of the two sites. To second
order in t, the energy is lowered due to hopping by the
amount �4t2=U0;2 for total spin Stot � 0; 2 [7] but zero
for total spin 1. With S1;2 the spin-1 operators for sites 1; 2
and using S1�S2 � �2;�1; 1 for Stot � 0; 1; 2, respec-
tively, we find that the effective Hamiltonian can be
written as

ĤH 12 � �� J�S1�S2� � K�S1�S2�
2; (1)

where J � � 2t2
U2

, K � � 2
3
t2
U2

� 4
3
t2
U0

, and � � J� K. For
23Na atoms, U2 > U0 > 0 [4,5,8]; hence K < J < 0. As a
matter of fact, since a2 � 52aB and a0 � 46aB (here
aB � Bohr radius), �U2 �U0�=U0 � �a2 � a0�=a0 	 1.
Hence jJj � jKj and jJ� Kj 	 jKj or jJj. (For 87Rb,
U0 > U2 > 0; in that case, J < K < 0.)

Thus the Hamiltonian (1) differs significantly from the
Heisenberg one [9] familiar in ionic crystals. There,
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FIG. 1. Dimers. The thick lines represent the pairs such as
Eq. (7).
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and hence �S1�S2� and �S1�S2�
2 are independent operators,

the Hamiltonian can, to a good approximation (ignoring
spin-orbit interactions, etc.), be written simply as ĤHHei �
J�S1�S2�. For perturbation to second order in the hop-
ping of electrons between the two ions, there cannot be
terms in S1�S2 with powers higher than 1 in the effec-
tive Hamiltonian, since two hoppings of electrons with
spin 1=2 can change only the z component of the spin of
an ion by at most 1, whereas, e.g., �S1�S2�

2 consists of
terms which can change that component by �2. Higher
order perturbation in hopping can give rise to terms
higher powers in �S1�S2� but only with much smaller
coefficients when hopping is small compared with the
Hubbard repulsion.

Another peculiar fact about Hamiltonian (1) is also
apparent. If the spins were classical vectors, K < J < 0
would require that the two spin vectors be parallel in
the lowest energy state. However, since U2 > U0 > 0,
ES�0 <ES�2 and hence the spins on the two sites actually
prefer to be antiferromatically correlated. The strong
quantum mechanical nature of the spins will be of sig-
nificance below.

Let us now begin with the case where Vx 	 Vy;z, so that
one can ignore couplings along y and z directions.We thus
have a collection of one-dimensional spin-1 chains.
Ignoring the � term in Eq. (1) not of relevance below,
our effective Hamiltonian is thus (for one chain)

ĤH �
X

l

J�Sl�Sl�1� � K�Sl�Sl�1�
2� (2)

�
�����������������
J2 � K2

p X

l

cos��Sl � Sl�1� � sin��Sl � Sl�1�
2�;

(3)

where the sum is over the site labels l and the second
relation defines �. For K < J < 0 � 3�

4 <�<� �
2 . If

jU2 �U0j 	 U0 & U2 as for 23Na, �! � 3�
4 , whereas

if U2 � U0 > 0, �! � �
2 . (For J < K < 0 as in 87Rb,

��< �<� 3�
4 .)

A Hamiltonian of the form in (3) has been studied
before, with most efforts in the region where the ground
state is expected to be in the Haldane phase (� �

4 <
�< �

4 ) [10]. There have been many fewer studies in the
range of � of relevance here. Though it is agreed that for �
near � �

2 the ground state should be in a dimer state [11],
results for other �’s have been somewhat controversial,
especially near � 3�

4 . In particular, Chubukov [12] sug-
gested that there is a critical �c ( � 3�

4 < �c <� �
2 ) such

that the dimer state is unstable for � < �c, where instead
the nematic phase should exist. A later study [13] claims
otherwise. Recently Demler and Zhou [14] considered
possible ground states for spin-1 bosons in optical lattice
as in the present Letter but did not include the dimer state
in their discussion.

We first readdress this issue by variational ansatz. We
denote the three possible spin projection states at a given
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site by j�i, j0i, and j�i and write the wave functions by
specifying these states at each site. The nematic phase is
given by

�nem � j . . . 0000 . . .i: (4)

This state is in direct analogy with the corresponding
‘‘polar’’ phase [5] in the bulk. This state has hSli � 0 and
hS2l;xi � hS2l;yi � hS2l;zi [15]. For the dimer state, the usu-
ally employed ansatz is [10,12]

�dimer � . . . �12�34 . . . ; (5)

where

�12 �
1���
3

p �j � �i � j ��i � j00i�12 (6)

is a singlet (Stot � 0) pair formed by sites 1 and 2 (the
subscripts label the sites). This state is shown schemati-
cally in Fig. 1(a). [There is another state degenerate with
(5) with all pairs shifted by one lattice site.] In the non-
interacting spin-wave approximation, the S � 2 modes
become unstable at �c � ��� tan�1 9

5 � �0:66�.
Chubukov [12] then concludes that for � 3�

4 <�< �c <
� �

2 (with �c possibly renormalized), the dimer state is
unstable and further speculates that the correct ground
state should be the nematic state.

Here we revisit this question of stability by studying an
improved variational ansatz. We write again Eq. (5) but
with the pair wave function given by

�12 �
1�����������������

2� j�j2
p �j � �i � j � �i � �j00i�12; (7)

etc., with � our variational parameter. If � � 1, our
ansatz reduces to that in Eq. (6). Notice that if j�j ! 1,
then �dimer ! �nem. It is simple to evaluate the expecta-
tion values of ĤH. We find, with � � j�jei ,
250402-2
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FIG. 2 (color online). The energy Edimer per site for the ansatz
wave function (5) and (7) as a function of the parameter � .
The lines are for, from bottom to top and in units of �,
(a) � � �0:6, �0:64, �0:66, �0:68, and �0:7; (b) � �
�0:7, �0:71, �0:72, �0:73, �0:74, and �0:75.
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hĤH12i �
2

2� j�j2
f��1� 2j�jcos �cos�

� �3� 2j�jcos � j�j2�sin�g (8)

for the bond (the part of ĤH) between sites 1 and 2, and

hĤH23i �
2

2� j�j2�2
f�3� 2j�j2 � j�j4�sin�g (9)

for the bond between sites 2 and 3. The energyE per site is
thus given by

Edimer �
1
2hH12i � hH23i�: (10)

The  dependent part of E arises only from hĤH12i and is
proportional to �sin�� cos��cos with a positive coef-
ficient. For our region of �, �sin�� cos��< 0; hence the
energy is minimized at  � 0, i.e., � real and positive.
Henceforth we put  � 0 and restrict 0 � � � 1.

By expanding Eq. (10) near � � 1, we find

Edimer � ��cos�� 8
3sin�� �

1
3�cos�� 5

9sin��

� �� � 1�2 � � � � : (11)

Thus � � 1 is a relative energy minimum provided � >
�c � ��� tan�1 9

5 � �0:66� defined above. This result
is in accordance with the discussions following Eq. (6).
However, we here do not interpret this as an instability of
the dimer state, but rather that a better or more general-
ized ansatz is required as is done here. Edimer as a function
of � is plotted in Fig. 2(a). For � < �c we find that the
minimum energies occur at 1< � <1. Thus though
the pair wave function differs from the singlet state, the
system is still dimerized. (It can be seen easily that
hH12i � hH23i provided � � 1.) � increases without limit
when � decreases towards � 3�

4 . To examine the stability
of the dimer state versus the nematic phase, we expand
Eq. (10) as a function of ! � ��1 near � � 1 (! � 0).
We find

Edimer � 2sin�� 2�sin�� cos��!� � � � ; (12)

where the ellipsis means terms of order !2 or higher.
Note that the energy of the nematic phase is given by
putting ! � 0; i.e., Enem � 2sin�. Thus the nematic
phase is never stable for our � region of interest, since
�sin�� cos��< 0. The behavior of Edimer as a function of
� for large � is plotted in Fig. 2(b).

Since �sin�� cos�� changes sign at � � � 3�
4 , the

nematic phase (4) is more stable than the dimer state (7)
for � <� 3�

4 . However, for �2�< �<� 3�
4 the ferro-

magnetic state

�ferro � j . . .��� . . .i (13)

[or any other state obtained by applying the lowering
operator Stot;� arbitary (limited only by twice the number
of sites) number of times], with energy per site Eferro �
cos�� sin�, becomes more stable than the nematic
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phase. Thus the nematic phase has no regime of stability
for the Hamiltonian in Eq. (3).

The ansatz wave function (7) does not have definite
total spin Stot unless � � 1. Moreover, the wave function
should be improved by including spin-wave fluctuations.
However, we expect that the projection onto definite Stot
[16] and correcting the states with correlations between
pairs will not change qualitatively the picture given
above.

Consider now finite Vy but still Vz ! 1. We thus now
have a collection of two-dimensional spin-1 lattices. In
general the tunneling matrix elements along the x and y
directions, hence the strength of the effective spin inter-
actions, can be unequal. The effective spin Hamiltonian
for our lattice is of the same form as Eq. (2), except that
we need two labels �lx; ly� for each lattice point, and the
interactions can be between nearest neighbor pairs along
both the x and y directions, with interaction constants
250402-3
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Jx;y, Kx;y. With ty � "1=2y tx, we have Jy � "yJx and Ky �
"yKx. Without loss in generality we can take 0< "y < 1.
Since the excitations of the dimer phase are gapped
[10,12], we expect that the dimer phase is stable at least
for small "y. It is straightforward to generalize our ansatz
(5) and (7) above to the two-dimensional case, with
schematic wave function as shown in Fig. 1(b). For each
site, there is one ‘‘strong’’ bond along the x direction
with energy as in Eq. (8), one ‘‘weak’’ bond also along
x with energy as in Eq. (9), and two weak bonds along
the y direction with total energy given by 2"y times
Eq. (9). From this total energy, we can see that our
discussions for one dimension is basically unaffected.
In particular, since Eq. (9) does not contribute any term
linear in ! � ��1, the discussions below Eq. (12) is
qualitatively unchanged. Within our ansatz, the nematic
phase is still always unstable towards the dimer phase for
any � 3�

4 < �<� �
2 and 0 � "y < 1.

Under the above variational ansatz, the states are
degenerate with respect to the spatial arrangements of
the pairs. In particular, the ansatz wave functions cor-
responding to Figs. 1(b) and 1(c), with the pairs form-
ing a rectangular and a triangular lattice, respectively,
are completely degenerate in energy. However, this de-
generacy will be lifted once spin-wave fluctuations are
taken into account. For � � 1 the spin-wave spectrum
can be found as in Ref. [12]. There are three S � 1
modes and five S � 2 modes, with dispersions !1� ~qq� �
X11�

2Y1(� ~qq�
X1

�1=2 and !2� ~qq� � X21�
2Y2(� ~qq�
X2

�1=2, where
X1 � cos�� 3sin�, X2 � 3�cos�� sin��, Y1 �
2
3 �2cos�� sin�� and Y2 �

2
3 sin�. (X1; X2 are positive

in our region of �.) Denoting the distance between
sites by a � �=k, for the rectangular lattice, (rect� ~qq� �
cos�2qxa� � 2"ycos�qya�, and for the triangular lattice,
(tri� ~qq� � cos� ~qq � ~aa� � "ycos ~qq � � ~aa � ~bb�� � "ycos� ~qq � ~bb�.
Here ~aa � �2a�x̂x and ~bb � a�x̂x� ŷy� are the lattice vectors
for our triangular lattice. The correction to the energy
from the spin waves is given by �E �

P
~qqf
3
2 !1� ~qq��

�X1 � Y1(� ~qq��� �
5
2 !2� ~qq� � �X2 � Y2(� ~qq���g. Evaluating

this energy for small "y, we find that the rectangular
lattice has lower energy. Assuming that the lattice type
applies for the entire region of � of interest here, we
conclude that the ground state for two dimensions should
be as shown in Fig. 1(b). Similar considerations suggest
that, for three dimensions, the lattice for ground state
should be tetragonal.

The distinguishing property of the dimer state is the
doubling of the unit cell, while the spins do not have
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long range order. Thus the periodicity of the excita-
tions with period �q � �=a � k � 2�=� for a certain
direction (x above) would be the signature of the dimer
state. These excitations can, in principle, be detected by
scattering.

In conclusion, we have pointed out that the trapped
bosonic atoms provide the opportunity to realize a quan-
tum mechanical state predicted in theory of quantum
magnetism so far not tested experimentally. Obtaining
this state in the laboratory would further widen the play-
ground for quantum many-body systems.
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