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We derive a generalized counting rule for hard exclusive processes involving parton orbital angular
momentum and hadron helicity flip. We start with a systematic way to enumerate the Fock components
of a hadronic light-cone wave function with n partons and orbital angular momentum projection lz. We
show that the wave-function amplitude  n�xi; ki?; lzi� has a leading behavior 1=�k2?�

�n�jlzj�min�n0�jl0zj��=2	1

when all parton transverse momenta are uniformly large, where n0 and l0z are the number of partons and
orbital angular momentum projection, respectively, of an amplitude that mixes under renormalization.
Besides the generalized counting rule, the result can be used as a constraint in modeling the hadronic
light-cone wave functions.
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Light-cone wave functions are useful tools to describe
physics of hadrons in high-energy scattering. They are
snapshots of hadrons when the latter are moving with the
speed of light (infinite momentum frame). These wave
functions can be obtained, in principle, through solving
the eigenequation of the light-cone Hamiltonian using
either analytical or numerical methods in the light-cone
gauge A� 
 0 [1,2]. They can also be obtained from the
Bethe-Salpeter amplitudes by integrating out the k	 com-
ponents of the parton momenta if the latter are known.
[The light-cone time x� and coordinate x	 are defined as
x� 
 1=

���
2

p
�x0 � x3�.] Their moments in momentum

space can be calculated using lattice QCD or the QCD
sum-rule methods [3,4]. In phenomenological ap-
proaches, the light-cone wave functions are parametrized
to fit experiment data [5–8].

In Ref. [9], we have proposed a systematic way to
enumerate independent amplitudes of a light-cone wave
function by writing down the matrix elements of a class of
light-cone-correlated quark-gluon operators, in much the
same way that has been used to construct independent
light-cone distribution amplitudes in which the parton
transverse momenta are integrated over [10]. In Ref. [11],
we have applied this approach to the nucleon, finding that
six wave-function amplitudes are needed to describe the
three-quark sector of the nucleon wave function. Note
that the distributions amplitudes studied by Braun et al.
[12], in which the quark transverse momenta are inte-
grated, are related but not the same as these wave-
function amplitudes.

In this Letter, we introduce a direct method of enumer-
ating the light-cone wave functions in momentum space.
By exploiting the relations between light-cone ampli-
tudes and the matrix elements of light-cone-correlated
quark-gluon operators, we study how the wave-function
amplitudes depend on the transverse momenta of partons
in the asymptotic limit. We find that a general amplitude
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 n�xi; ki?; �i; lzi� describing an n-parton state with orbital
angular momentum projection lz goes like

 n�xi; ki?; �i; lzi� 
1

�k2?�
�n�jlzj�min�n0�jl0zj��=2	1

; (1)

in the limit that k1?  k2?  ::: kn	1?  k? ! 1,
where n0 and l0z characterize the amplitude that mixes
under scale evolution. The result explains the scaling
behavior of the F2�Q

2� form factor obtained recently in
perturbative QCD [13], and helps to establish more gen-
eral scaling properties of exclusive scattering amplitudes
[14–18]. It also can be used as a constraint in building
phenomenological wave functions of hadrons consistent
with perturbative QCD.

Let us first introduce a systematic method to enumer-
ating the light-cone Fock wave function of a hadron with
helicity �. Suppose a Fock component has n partons
with creation operators ay1 ; . . . ; a

y
n , where the partons

can either be gluons or quarks and the subscripts label
the partons’ quantum numbers such as spin, flavor, color,
momentum, etc. Assume all color, flavor (for quarks)
indices have been coupled properly using Clebsch-
Gordon coefficients. The longitudinal momentum frac-
tions of the partons are xi �i 
 1; 2; . . . ; n�, satisfyingP
n
i
1 xi 
 1, and the transverse momenta ~kk1? . . . ; ~kkn?,

satisfying
Pn
i
~kki? 
 0. We will eliminate ~kkn? in favor of

the first n	 1 transverse momenta. Assume the orbital
angular momentum projections of the partons are
lz1; . . . ; lz�n	1�, respectively, and let lz 


P
n	1
i
1 lzi, then

lz � � 
 �; (2)

where � 

P
n
i
1 �i is the total parton helicity. Without

loss of generality, we assume lz � 0; even then, lzi can
have both signs. Thus, a general term in the hadron wave
function has the structure
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Z Yn
i
1

d�i��k�1?�
jlz1j�k�2?�

jlz2j � � � �k��n	1�?�
jlz�n	1�j �  n�xi; ki?; �i; lzi�a

y
1a

y
2 ; . . . ; a

y
n j0i; (3)

where k�i? 
 kxi � kyi and the ��	� sign applies when lzi is positive (negative), and d�i� 
 dxid
2ki?=�

�������
2xi

p
�2��3� with

the overall constraint on xi and ki? implicit.
The above form can be further simplified as follows. Assume lzi is positive and lzj negative, and lzi > jlzjj, we have

�k�i?�
lzi�k	j?�

	lzj 
 �k�i?�
lzi�lzj�k�i?k

	
j?�

	lzj 
 �k�i?�
lzi�lzj��0 ��1i���ki�kj��;

where �;� 
 1; 2, �0;1 are polynomials in ~kk2i?, ~kk2j?, and ~kki? � ~kkj?. On the last line of the above equation we have used
the identity ������ 
 ������ 	 ������. If lzi � lzj � 0, one can use i���k1�k2�k�1? 
 ~kk1? � ~kk2?k�1? 	
~kk1? � ~kk1?k�2? to further reduce the second term in the bracket. Following the above procedure, we can eliminate all
negative lzj, a general lz > 0 component in the wave function reads

Z Yn
i
1

d�i��k�1?�
lz1�k�2?�

lz2 � � � �k�
�n	1�?�

lz�n	1� �

8<
:

Xn	1

i<j
1jlzi
lzj
0

i���ki�kj� n�ij��xi; ki?; �i; lzi� �  n�xi; ki?; �i; lzi�

9=
;

� ay1a
y
2 ; . . . ; a

y
n j0i; (4)
where
P
ilzi 
 lz and lzi � 0, and the sums over i and j are

restricted to the lzi 
 0 partons.
Using the above procedure, it is easy to see that the

proton state with three valence quarks has six indepen-
dent scalar amplitudes  �i�

uud; i 
 1; :::; 6 [11]. The wave-
function amplitudes for three quarks plus one gluon will
be presented in a separate publication.

The mass dimension of  n can be determined as
follows: Assume the nucleon state is normalized relativ-
istically hPjP0i 
 2E�2��3�3� ~PP0 	 ~PP�, jPi has mass di-
mension 	1. Likewise, the parton creation operator ayi
has mass dimension 	1. Given these, the mass dimension
of  n is 	�n� jlzj 	 1�. The mass dimension of  n�ij�, on
the other hand, is 	�n� jlzj � 1� which can be accounted
for by the previous formula with an effective angular
momentum projection jlzj � 2.

To find the asymptotic behavior of an amplitude
 n�xi; ki?; lzi� in the limit that all transverse momenta
are uniformly large, we consider the matrix element of a
241601-2
corresponding quark-gluon operator between the QCD
vacuum and the hadron state

h0j� 1
�!1� � � �� n

�!n�jP�i; (5)

where � are parton fields such as the ‘‘good’’ (+) compo-
nents of quark fields or F�� of gluon fields, and  i are
Dirac and transverse coordinate indices when appropriate.
All spacetime coordinates !i are at equal light-cone time,
!�i 
 0. Fourier transforming with respect to all the
spatial coordinates (!	i ,!i?), we find the matrix element
in the momentum space, h0j� 1

�k1� � � �� n	1
�kn	1� �

� n
�0�jP�i �   1;...; n

�k1; . . . ; kn	1�, here we have
just shown n	 1 parton momenta because of the
overall momentum conservation. The matrix element
can be written as a sum of terms involving projection
operator �A 1;...; n

�ki?� multiplied by scalar amplitude
 nA�xi; ki?; lzi�:
h0j� 1
�k1� � � �� n	1

�kn	1�� n
�0�jP�i �   1;...; n

�k1; . . . ; kn	1� 

X
A

�A 1;...; n
�ki?� 

�A�
n �xi; ki?; lzi�; (6)

where the projection operator �A contains Dirac matrices and is a polynomial of order jlzj in parton momenta. For
example, the two-quark matrix element of the pion can be written as [9],

h0jd� �0�u�"�x; k?�j�
��P�i 
 ��5 6P�"  

�1�

ud
�x; k?; lz 
 0� � ��5#

	��" P
�k?� 

�2�

ud
�x; k?; jlzj 
 1�; (7)
where the projection operators are shown manifestly.
More examples for the proton matrix elements can be
found in Ref. [11].

The matrix element of our interest is, in fact, a Bethe-
Salpeter amplitude projected onto the light cone. One can
write down formally a Bethe-Salpeter equation which
includes mixing contributions from other light-cone ma-
trix elements. In the limit of large transverse momentum
ki?, the Bethe-Salpeter kernels can be calculated in per-
turbative QCD because of asymptotic freedom. In the
lowest order, the kernels consist of a minimal number
of gluon and quark exchanges linking the active partons.
For the lowest Fock components of the pion wave func-
tion, one gluon exchange is needed to get a large trans-
verse momentum for both quarks [17]. As we shall see,
asymptotic behavior of the wave-function amplitudes
depends on just the mass dimension of the kernels.

Schematically, we have the following equation for the
light-cone amplitudes,
241601-2
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 �1;...;�n�k1; . . . ; kn	1� 

X
A

�A�1;...;�n�ki?� 
A
n �xi; ki?; lzi�



X

n0;�1;...;�n0

Z
d4q1; . . . ; d4qn0	1H�1;...;�n;�1;...;�n0

�qi; ki� �  �1;...;�n0
�q1; . . . ; qn0	1�; (8)
whereH�1;...;�n;�1;...;�n0
are the Bethe-Salpeter kernels mul-

tiplied by the parton propagators. When the parton trans-
verse momenta are uniformly large, the kernels can be
approximated by a sum of perturbative diagrams. The
leading contribution to the amplitudes on the left can be
obtained by iterating the above equation, assuming the
amplitudes under the integration sign contain no hard
components. As such, the integrations over qi? can be
cut off at a scale  where k? �  � �QCD, and the qi?
dependence in H can be expanded in Taylor series. In
order to produce a contribution to  �A�

n �xi; ki?; lzi�, the
241601-3
hard kernels must contain the projection operator
�A�1;...;�n�k1; . . . ; kn	1�. Hence we write

H�1;...;�n;�1;...;�0
n
�qi; ki� 


X
A;B

�A�1;...;�n�ki?�HAB�xi; ki?; yi�

� �B�1;...;�n0
�qi?�; (9)

where �B�1;...;�n0
�qi?� is again a projection operator and

HAB�xi; ki?; yi� are scalar functions of the transverse mo-
menta ki? invariants. Substituting the above into Eq. (8)
and integrating over q	i ,
 �A�
n �xi; ki?; lzi� 


X
B;�i

Z Yn0
i
1

d�i�HAB�xi; ki?; yi��B�1;...;�n0
�qi?� �  �1;...;�n0

�yi; qi�



X

B;�i;A0

Z Yn0
i
1

d�i�HAB�xi; ki?; yi��B�1;...;�n0
�qi?� � �A

0

�1;...;�n0
�qi?� 

�A0�
n0 �yi; qi?; l0zi�; (10)
where the integrations over qi? are nonzero only when the
angular momentum content of �B and �A

0
is the same.

Now the large momenta ki? are entirely isolated in HAB
which does not depend on any soft scale. The asymptotic
behavior of  �A�

n �ki?� is determined by the mass dimen-
sion of HAB, which can be obtained, in principle,
by working through one of the simplest perturbative
diagrams.

A much simpler way to proceed is to use light-cone
power counting in which the longitudinal mass dimen-
sion, such as P�, can be ignored because of the boost
invariance of the above equation along the z direction.We
just need to focus on the transverse dimensions. Since the
mass dimension of the amplitudes is 	�n� jlzj 	 1�,
that of �B�A

0
is 2jl0zj, and the integration measure 2�n0 	

1�, a balance of the mass dimension yields �HAB� 

	�n	 1� jlzj� 	 �n0 	 1� jl0zj�. Therefore, we arrive
at the central result of our Letter Eq. (1) for the leading
behavior of the wave-function amplitude, which is deter-
mined by a mixing amplitude with smallest n0 � jl0zj.
Since the wave function has mass dimension of 	�n�
jlzj 	 1�, the coefficient of the asymptotic form must have

a soft mass dimension �
min�n0�jl0zj�	1
QCD .

For the quark-antiquark amplitudes of the pion, the
leading behavior is determined by self-mixing:
 �1�

ud
�x; k?�  1=k2? and  �2�

ud
�x; k?�  1=�k2?�

2. On the
other hand, for the three-quark amplitudes of the proton
[11], we have,  �1�

uud�xi; ki?�  1=�k2?�
2,  �2;3;4;5�

uud �xi; ki?� 
1=�k2?�

3;  �6�
uud�xi; ki?�  1=�k2?�

4. Here we recall that for
 �2�
uud, the effective angular momentum projection is
leffz 
 2. Its leading behavior is determined by its mixing
with  �1�

uud.
The above method of enumerating light-cone wave
functions with arbitrary orbital angular momentum pro-
jection and deriving their asymptotic behavior at large
transverse momenta is applicable to any renormalizable
quantum field theory. In the context of QCD, one of the
important consequences is the power counting rule for
the hadronic exclusive processes. While the traditional
counting rule assumes that partons have zero orbital
motion in hadrons [14,15], a generalized counting rule
can be derived including nonzero orbital angular mo-
menta. Let us consider a few examples here and leave a
more detailed discussion to a longer publication.

The first important application is the Pauli form factor
F2 of the nucleon which involves hadron helicity flip.
Since the quark mass effects are negligible, the helicity
flip can be achieved through quark orbital angular
momentum. Using the expression derived for F2�Q

2� in
Ref. [11] and the asymptotic behavior of  �1�

uud  1=k4? and
 �3;4�
uud  1=k6?, we easily derive the result found in

Ref. [13]:

F2�Q
2�  1=�Q2�3; (11)

in asymptotic limit. The explicit perturbative QCD cal-
culation finds an additional double logarithm in Q2 de-
pendence, and predicts thatQ2=log2�Q2=�2�F2=F1 scales
as a constant at large Q2 [13]. This latter scaling works
better than expected with the recent JLab data [13,19,20].
We point out that the proton amplitudes  �3;4�

uud obtained
from Melosh rotation are suppressed by only one power of
k? relative to  �1�

uud, and hence are inconsistent with
perturbative QCD in the large k? limit [7,21–23].
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A quick way to find a generalized counting rule for
hard exclusive processes [14,15] is to count the soft mass
dimensions in scattering amplitudes; the scaling in hard
kinematic variables is then determined by dimensional
balance. For example, the wave-function amplitude
 n�xi; ki?; lzi� when used in a factorization formula con-
tains a soft-scale factor �n�jlzj	1

QCD . Therefore a scattering
amplitude involvingH 
 1; . . . ; N hadrons with the light-
cone amplitudes  nH �xi; ki?; lzi� contains a soft mass

factor �
P

H
�nH�jlzH j	1�

QCD . In the hadronic process A� B!
C�D� � � � , the fixed-angle scattering cross section
calculated using the amplitudes  n�xi; ki?; lzi� goes like

�# s
	1	

P
H

�nH�jlzH j	1�

; (12)

where H sums over all hadrons involved and �# contains
only angular variables. For lzH 
 0 and minimal n, this is
just the traditional counting rule of [14,15]. The general-
ized counting rule here applies to any hard process pro-
ceeded through any wave-function amplitudes including
hadron helicity flip. It reproduces the result of Chernyak
and Zhitnitsky for form factors where parton orbital
angular momentum was first considered [16].

As a second application, we consider pp elastic scatter-
ing. Three helicity conservation amplitudes are known to
go like M��� ! ��� M��	 ! �	� M�	� !
�	�  1=s4 [18]. Our counting rule provides the scaling
behavior of the helicity flipping amplitudes M��� !
�	�  1=s9=2 and M�		 ! ���  1=s5. The interfer-
ence between different helicity amplitudes offers a new
mechanism to explain the experimental observed oscil-
lation in the scaling cross sections and the spin correla-
tions [24].

Our final example is the fixed-angle photopion produc-
tion, �p! ��n, for which the hadron helicity conserva-
tion amplitudes scale M��p" ! ��n"�  1=s5=2. Our rule
predicts that the hadron helicity-flip amplitude M��p" !
��n#�  1=s3. New experiments at JLab with polariza-
tions allow a separation of different helicity amplitudes
and thus a test of the generalized counting rule.

We end the Letter with a few cautionary notes. First,
we have ignored the Lanshoff type of contributions in
hadron-hadron scattering [25]. Second, in an actual cal-
culation of a scattering amplitude, there are integrations
over partons’ light-cone fractions xi. These integrations
may be divergent at the end points xi 
 0; 1 depending
upon the choices of the light-cone wave functions. The
QCD factorization and the naive power counting break
down there [26,27]. Finally, the light-cone wave functions
defined in the light-cone gauge have singularities [28].
When regularized, Sudakov type of form factors appear
which lead to the dependence of the light-cone wave
functions on P� [29]. The k? counting breaks down in
the region where the Sudakov form factors are important.
241601-4
However, in certain cases the end point singularities are
regulated by the Sudakov effects, and the last two adverse
factors cancel [30], leaving the naive counting rule intact.
It is not clear, however, that this happens in general.
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