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One-Shot Quantum Measurement Using a Hysteretic dc SQUID
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We propose a single shot quantum measurement to determine the state of a Josephson charge
quantum bit (qubit). The qubit is a Cooper pair box and the measuring device is a two junction
superconducting quantum interference device (dc SQUID). This coupled system exhibits a close
analogy with a Rydberg atom in a high Q cavity, except that in the present device we benefit from
the additional feature of escape from the supercurrent state by macroscopic quantum tunneling, which
provides the final readout. We test the feasibility of our idea against realistic experimental circuit
parameters and by analyzing the phase fluctuations of the qubit.

DOI: 10.1103/PhysRevLett.90.238304 PACS numbers: 85.25.Dq, 03.67.Lx, 74.50.+r
can be resolved in one shot. The readout device is a capacitance to a dc and pulse voltage source.
A Cooper pair box (CPB) is a controllable macroscopic
two-level system [1,2], which is considered as a poten-
tial qubit in the context of quantum computing [3].
Coherent Rabi oscillations have been observed in a
CPB, using ultrafast pulses [2]. Recently, in a supercon-
ducting device named ‘‘quantronium,’’ coherent oscilla-
tions were observed using microwave pulses [4]. The
observed oscillations lived for almost a microsecond,
making superconducting circuits promising for realizing
quantum gates.

Despite this progress, quantum measurement on a CPB
still remains a challenge. The charge readout circuits,
such as the one in Ref. [2] or those using single electron
tunneling transistors (see, e.g., Ref. [5]), are far from
ideal due to decoherence induced by the unavoidable
background charge fluctuations and by backaction dur-
ing the measurement, e.g., in the form of shot noise. The
former problem can be avoided to a large extent if the
qubit is operated at the degeneracy point of the two-level
system: at this optimum point linear coupling to charge
fluctuations is absent. In the quantronium experiment,
both problems were eliminated successfully by measur-
ing the two quantum states of a Cooper pair transistor
(CPT) at the optimum point by a hysteretic Josephson
junction (JJ). This junction, working in its classical re-
gime, measured the persistent current of the two quan-
tum states of the CPT. This method cannot, however,
be used to measure the quantum state of a CPB.
Moreover, the measurement did not resolve the quantum
state in one shot.

In this Letter, we propose a new quantum measurement
procedure based on the entanglement between two quan-
tum systems: a CPB coupled to a superconducting reso-
nator. The dynamics of this coupled system has been
theoretically investigated recently [6–9]. Here we show
that at the degeneracy the two quantum states of the CPB
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current-biased two junction superconducting quantum
interference device (dc SQUID) (the resonator) and it is
controlled by adiabatic pulses of flux. Very high sensitiv-
ity and fast measurement can be reached with this
method. A dc SQUID is preferred over a JJ because
manipulations using external flux do not suffer from
time limitations. In a JJ, nanosecond pulses of bias cur-
rent cannot be applied because low pass filters are neces-
sary to exclude high-frequency noise [10].

The circuit of a Cooper pair box coupled to a current-
biased dc SQUID was inspired by experiments on a
Rydberg atom in a high Q cavity [11]. For a bias current
I well below the critical current Ic, the CPB and the
SQUID play the roles of the Rydberg atom and the high
Q cavity, respectively. For example, Rabi oscillations are
predicted to occur as a result of spontaneous emission and
reabsorption by the CPB of a single oscillation quantum
in the SQUID [6]. The device can be considered as a two-
level system coupled to a harmonic oscillator. However,
for a bias current very close to, but below, the critical
current, macroscopic quantum tunneling (MQT) in the
SQUID can occur [12]. This quantum escape phenome-
non has no equivalent in high Q cavity experiments, and
it introduces a new element into the dynamics of the
system. We describe how we can benefit from MQT in
order to do a very fast one-shot quantum measurement on
the CPB.We discuss the performance of this measurement
and its backaction on the CPB.

The superconducting quantum circuit that we consider
is shown in Fig. 1. It contains three parts which we
describe in detail below: a Cooper pair box, a hysteretic
dc SQUID, and a coupling capacitance between the two.
The circuit is connected to the external classical circuits
by three different couplings: a resistance R in parallel to a
dc current source and voltmeter, a mutual inductance to a
source of flux modulating current pulses, and a gate
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FIG. 1. The CPB qubit is coupled to a measuring SQUID
through the capacitance Cc. Vg controlled the CPB states, I and
I�t� the measurement procedure. The voltmeter Vm performs
the readout.
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The Cooper pair box consists of a small supercon-
ducting island, coupled to a gate voltage Vg by a gate
capacitance Cg. The island is furthermore connected
capacitively to a superconducting electrode via a JJ with
a capacitance CJ and Josephson energy EJ. We are inter-
ested in the limit of small Josephson energy, EJ � EC;J,
where EC;J � 2e2=CJ;eff is the elementary charging energy
of the box with CJ;eff � CJ � �1=CS � 1=�Cc � Cg��

�1;
CS is the SQUID capacitance and Cc the coupling capaci-
tance. Let us introduce the basis of charge states jn�q�i,
where n�q� corresponds to the number of excess Cooper
pairs on the island. If the dimensionless gate chargeNg �
�CgVg=�2e� is close to 1=2, the charge states j0�q�i and
j1�q�i are almost degenerate and the relevant eigenstates of
the CPB are superpositions of these charge states.
Specifically, the ground state and the first excited state
are, respectively, j�i � �j0�q�i � j1�q�i�=

���
2

p
and j�i �

�j0�q�i � j1�q�i�=
���
2

p
, with eigenenergies E� � EC;J �

1
2EJ. Thus, the CPB effectively behaves as a quantum-
mechanical two-level system [3].

The hysteretic dc SQUID consists of a superconducting
loop with two underdamped JJs which both have ideally
the same critical current I0 and capacitance CS=2. We
neglect the loop inductance and effects due to asymmetry
in the SQUID. The damping of the two junctions is also
neglected now, but it will be discussed at the end. With
these approximations, the SQUID equation of motion is
similar to that of a single JJ, describing a particle of mass
m � CS;eff��0=�2��2 in a tilted washboard potential
U�’� � ES��I’=Ic � cos�’��, where ’ is the phase dif-
ference of the SQUID, I is the bias current through the
SQUID, �0 � h=2e is the superconducting flux quantum,
�dc is the external flux, and Ic � 2j cos��dc=�0�jI0,
ES � Ic�0=�2�, and CS;eff � CS � �1=CJ � 1=�Cc �
Cg��

�1 are the effective critical current, Josephson en-
ergy, and capacitance of the SQUID, respectively.

For values of bias current not too far below the critical
current, the potentialU�’� can be well approximated by a
cubic potential. The quantum dynamics of the SQUID
using the reduced momentum and position operators P̂P �

�1=
�������������
m �h!p

p
�P and X̂X � �

����������������
m!p= �h

q
�X, respectively, is then

described by ĤH0 �
1
2 �h!p�P̂P

2 � X̂X2� � ��I� �h!pX̂X
3, where

X � ’ is the phase difference, P is its conjugate opera-
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tor, and !p � �2Ic=��0CS;eff��
1=2�2�1� I=Ic��

1=4 is the
effective plasma frequency of the SQUID. The pa-
rameter ��I� � �1=�6a��2�1� I=Ic���3=4, where a �
�h�1=2��0=�2��3=4�CS;effIc�1=4, gives the relative magni-
tude of the cubic term as compared to that of the har-
monic oscillator term.

For values of I below Ic with ��I� � 1, the potential
barrier is high compared to �h!p, and the cubic term in ĤH0

can be neglected. Many low-lying states are found near
the minimum of the quadratic potential. The broadening
of these states due to tunneling can be ignored. Hence,
these states are well approximated by harmonic oscillator
eigenstates, denoted by j0i; j1i; j2i; . . . , corresponding to
the presence of 0; 1; 2; . . . oscillation quanta in the
SQUID, respectively. Thus, at low enough bias current,
the SQUID behaves as a superconducting quantum reso-
nator. Since in this limit the phase is localized in a well
defined minimum of the potential U, the time-averaged
voltage Vm across the SQUID remains zero.

If the bias current is increased such that I & Ic, ��I� is
no longer negligible and the cubic term affects the
SQUID dynamics. The barrier height, given by �U �
4

���
2

p
=3ES�1� I=Ic�

3=2, and !p decrease and vanish at the
critical current. The remaining energy levels broaden due
to quantum tunneling from the metastable wells of the
potential U. The broadening of the ground state energy
for low damping is given by the tunneling rate �0 �

!p6
���������
6=

p �������������������
�U= �h!p

q
exp��36�U=�5 �h!p��. Since the ex-

cited states jni are located closer to the top of the barrier,
the tunneling rates and hence the broadening of these
states increase with increasing energy of the level as �n 
�exp��36=5��n�0 . Specifically, the tunneling rates from
states j0i and j1i of the SQUID are different by approxi-
mately a factor of a thousand [13,14]. After a tunneling
event, the phase of the SQUID is no longer localized and
the time-averaged voltage Vm across the SQUID is finite.

The magnetic flux through the SQUID affects its cri-
tical current Ic; hence, !p, ��I�, and therefore ĤH0 de-
pend on the flux. For small, time-dependent variations
of flux, ���t� � �0, and for SQUID parameters such
that a� 1, the total time-dependent Hamiltonian is
given by ĤH�t� � ĤH0 � ��I;�dc�����t�=�0� �h!pX̂X, where
��I;�dc� � a�2�1� I=Ic��

�3=8I=Ic tan��dc=�0�. Be-
low we consider the effect of a time-dependent perturba-
tion ���t� on the dynamics of the coupled system.

The coupling capacitance Cc plays a crucial role in the
circuit of Fig. 1 since it couples the qubit and the SQUID
to each other. Physically, Cc couples the charge n�q� � Ng

on the CPB to the charge on the SQUID. The coupling
Hamiltonian can be written as ĤHc � �iEcoupl�n�q��P̂P.
Here we introduced the characteristic coupling energy
Ecoupl �

��������������������
�h!p=EC;S

q
EC;c=4, where EC;c � 2e2=Cc;eff and

EC;S � 2e2=CS;eff with Cc;eff � Cc � Cg � �1=CJ �
1=CS�

�1��CJ � CS�=�Cc � Cg��=2. This coupling energy
leads to full entanglement between the states of the CPB
and the SQUID at the resonance condition EJ � �h!p [6].
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Having detailed the superconducting quantum circuit,
we now describe the measurement procedure. Suppose
that, at time t � 0, the CPB is in a coherent superposition
�j�i �  j�i, as a result of quantum operations per-
formed at times t < 0 using the gate voltage Vg [2]. We
propose a way to measure the probability j j2. The mea-
surement procedure is depicted schematically in Fig. 2
and consists of three successive steplike variations of flux
through the SQUID. The steps are not sharp, but have a
finite rise and fall time �t. The flux steps must be adia-
batic in terms of the dynamics of the CPB, �t� h=EJ,
and of the SQUID, �t� 2=!p. But they must be in-
stantaneous in terms of the coupling dynamics, �t�
h=Ecoupl. The first step at t � 0 puts the SQUID into
resonance with the CPB during a time T0. The second
step at T0 drives the SQUID close to its critical current
during a time �t. The last step sets the SQUID far below
the critical current.

In more detail, at t < 0, during the quantum manipu-
lation of the CPB, the SQUID must be decoupled. This
condition is achieved if � �h!p � EJ� � Ecoupl, i.e., off
resonance. Thus, in leading order, the eigenstate of the
entire system is a product of the eigenstates of the qubit
and the SQUID, in spite of the presence of the coupling
capacitance. At t � 0, suppose the SQUID is in its ground
state j0i. The quantum state of the entire system is then
j �t � 0�i � ��j�i �  j�i� � j0i.

The flux step applied at t � 0 reduces the effective
critical current, and the resonant condition EJ � �h!p is
satisfied for a time T0. The state j�i � j0i is still sta-
tionary at this resonance since jEJ � �h!pj � Ecoupl. But
j�i � j0i is no longer an eigenstate: the state of the
coupled system oscillates in time between j�i � j0i and
j�i � j1i at the angular frequency 2Ecoupl= �h. Thus, after a
time T0 � h=�4Ecoupl�, j�i � j0i has been transformed
into j�i � j1i. At this point, a second flux step is applied
through the SQUID which drives the system out of reso-
nance. The dynamics is therefore ‘‘frozen’’ in the super-
position j �t � T0�i � j�i � ��j0i � ei$ j1i�, where $
is the relative phase arising from the evolution of the
initial qubit state during time T0. The full entanglement
T0
∆t

δΦ(t)

Timet=0

− −+
0

1

FIG. 2. The quantum measurement procedure is illustrated
for an initial state j�i.
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has transferred the coherent superposition of the CPB to
the SQUID; i.e., the information on the initial qubit state
is now contained in the SQUID.

The second flux step reduces the effective critical
current such that the constant bias current is close to Ic.
The barrier is therefore significantly decreased and the
tunneling rates �0 and �1 are drastically increased.
During the time �t, the SQUID can escape from the
well to the nonzero voltage state by tunneling. If �t
satisfies 1=�1 � �t� 1=�0, and relaxation between
the levels is neglected, the SQUID is in its finite-voltage
state if and only if the SQUID was in the state j1i at time
T0. In other words, the proposed measurement determines
the state of the SQUID in one shot. The escape probability
corresponds to the j j2 amplitude of the initial super-
position in the CPB. The lack of perfect contrast between
the escape rates from the two states and relaxation pro-
cesses introduces an intrinsic error in the proposed quan-
tum measurement procedure; the influence of this will be
estimated later.

At t � T0 � �t, the flux is switched back to its initial
value to prevent further tunneling. As the SQUID is
hysteretic, the zero- and finite-voltage states are stable
for a sufficiently long time to perform the readout. The
first two steps of duration T0 and �t perform the quantum
measurement. The last step provides the classical readout
measurement.

To check the feasibility of our measurement procedure,
we use some typical values for parameters of an alumi-
num superconducting circuit. For the CPB, we choose
EJ � 26:2 &eV, Cg � 10 aF, and CJ � 0:63 fF, and for
the SQUID, I0 � 1 &A, I � 1:1 &A, CS � 1 pF, and
�dc=�0 � 0:277. For ���t�=�0 � 0:013 during the first
step, the resonance condition is satisfied with five levels
in the well; the escape time from level j1i is much longer
than 1 ms. An additional increase of flux ���t�=�0 by
the same amount is enough to change �h!p by 4 &eV
(� Ecoupl) and the system is driven out of resonance.
The escape time of level j1i drops to about 1 ns.
Finally, we choose Cc � 0:1 fF, yielding Ecoupl �
0:22 &eV. Using T0 � 4:5 ns and �t � 5 ns, the one-
shot quantum measurement can be performed.

We now turn to the influence of relaxation in the
SQUID on the measurement procedure. At low tempera-
ture, the rate �R of relaxation between adjacent levels
down due to interaction with the environment is domi-
nant. Assuming �1 � �0;�R, the escape probability at
t � T0 � �t is given in the lowest order by

Pe�j0i� j1i � j j2 � j�j2�1� e��0�t�

� j j2�e��1�t � ��R=�1��e
��0�t � e��1�t��:

(1)

Neglecting the influence of relaxation in Eq. (1), and
assuming an infinite contrast between �0 and �1, the
escape probability gives the j j2 amplitude of the initial
superposition in the CPB. The finite contrast between the
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FIG. 3. Escape probability for three different initial states:
j�i, j�i, and �j�i � j�i�=
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p
for Q � 500. The parameters for

the circuit used in the calculation are given in the text.
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two states introduces an intrinsic error in the proposed
quantum measurement procedure which is about 0.8%.
Taking into account the relaxation processes, the escape
probability versus the pulse duration �t is plotted in Fig. 3
using the experimental parameters listed above for three
different initial states: the two states j�i and j�i and the
coherent superposition �j�i � j�i�=

���
2

p
. The relaxation

rate is defined as �R � !p=Q, where the Q factor was
chosen to be Q � 500. The measurement of the escape
during �t � 5 ns is a direct measurement of the j j2

amplitude. For Q � 500, the total error of the one-shot
measurement is less than 4%.

It is important to maintain coherence of the qubit.
Specifically, we discuss the backaction, i.e., dephasing
of the qubit, due to the measuring circuit formed by the
SQUID and its electrical environment. To analyze this we
need to study the amplitude of the fluctuations of the
phase across the CPB. The measurement environment
consists of the dc SQUID in parallel with the resistance
R, which describes the dissipative part of the circuit. It is
straightforward to obtain the phase fluctuations [15],
h��'�2i � h�'�t� �'�0��2i, where '�t� is the phase dif-
ference across the small junction in the CPB at time t,
using the fluctuation-dissipation theorem. These phase
fluctuations are determined by the real part of the im-
pedance seen by the small junction. If the environment
would be purely dissipative (resistance R), we would
obtain fluctuations which diverge in time. On the con-
trary, the inductively shunted circuit, realized by the
SQUID, protects the qubit: asymptotically (t! 1), the
expectation value of phase fluctuations levels off to [16]

h��'�2i1 ’
2
RQ

�����������
LS

CS;eff

s �
Cc � Cg

CJ � Cc � Cg

�
2
: (2)

Here RQ � h=4e2 is the resistance quantum and LS ����
2

p
� �h=2eIc��1� I=Ic�

�1=2 is the Josephson inductance of
the SQUID. We assumed low temperatures kBT � �h=
�LSCS;eff�. According to Eq. (2) the inductance, LS, pro-
vides protection against dephasing: the dissipative part of
the environment does not affect the value of h��'�2i1.
Using the typical experimental values given above, we
obtain

�����������������
h��'�2i

p
’ 0:02, which is much smaller than ,

thereby demonstrating the weakness of the residual phase
fluctuations. The low temperature condition is verified if
T � 1 K. As we have shown, the SQUID provides pro-
tection of the qubit from the decoherence induced by the
environment. Finally, the proposed measurement can be
realized at the optimum point, where the background
charge induced decoherence is largely suppressed.

In summary, we have shown theoretically that a two
junction SQUID can perform a single shot quantum mea-
surement of a Josephson charge qubit. We discussed the
limits of this detector posed by the finite contrast in
measuring the quantum state of the SQUID, the finite
quality factor of the SQUID, and coupling of the qubit to
environment noise.
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