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Structural Arrest in Dense Star-Polymer Solutions
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The dynamics of star polymers is investigated via extensive molecular and Brownian dynamics
simulations for a large range of functionality f and packing fraction �. The calculated isodiffusivity
curves display both minima and maxima as a function of � and minima as a function of f. Simulation
results are compared with theoretical predictions based on different approximations for the structure
factor. In particular, the ideal glass transition line predicted by mode-coupling theory is shown to
exactly track the isodiffusivity curves, offering a theoretical understanding for the observation of
disordered arrested states in star-polymer solutions.
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in which the characteristic relaxation time of the system
becomes extremely long [7–12]. The onset of gelation, as

variety and nature of the equilibrium phases themselves
is very different from the HS case.
Star polymers play an important role in soft condensed
matter systems, since they have been shown to interpolate
between hard colloids with a strong repulsive core on one
side and the soft flexible polymeric systems on the other
[1]. Star polymers are constituted by a given number of
polymeric arms, called functionality f, tied to a common
center. As the functionality increases, the system becomes
more similar to a hard sphere (HS) system, while low-
ering the functionality the interparticle potential be-
comes increasingly soft. Recently, many interesting
properties of star polymers have been clarified on the
basis of an effective interaction potential between
star polymer centers [2]. In line with their hybrid
polymer-hard colloid character, star polymers display
no crystallization transition when the functionality f is
low, f � 34. At higher functionalities, a freezing transi-
tion takes place at about the overlap concentration of the
system, into a bcc solid for lower functionalities and into
an fcc solid for higher functionalities [3]. The freezing is
succeeded by either a reentrant melting transition to the
fluid for intermediate functionalities, 34 & f & 54, or by
a cascade of structural phase transitions at higher values
of f. The functionality-dependent bcc and fcc solids [4,5],
as well as the reentrant melting transition [6], have been
experimentally observed in solutions of starlike block
copolymer micelles. Though the crystalline solids are
the phases of thermodynamic equilibrium at such high
concentrations, the experimental situation is often some-
what different. A variety of studies with star polymers or
starlike systems of various functionalities has shown that
it is quite difficult to nucleate a crystal. Especially at high
functionalities, the solutions display a gelation transition,
i.e., a dynamical arrest into an amorphous crowded state
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opposed to crystallization, is further enhanced by the
presence of some polydispersity in the samples, which
gets indeed more pronounced as functionality increases.

The purpose of this work is to analyze the dynamics of
star polymers in athermal solvents theoretically, by em-
ploying a combination of methods. Using the star-star
effective interaction potential, in which all microscopi-
cally fluctuating degrees of freedom are averaged out,
we carry out detailed molecular dynamics (MD) and
Brownian dynamics (BD) simulations to measure the
diffusivity of the star-polymer fluids down to the homo-
geneous nucleation limit. Moreover, we carry out a mode-
coupling theory (MCT) analysis [13] of the long-time
limit of the correlation functions, which allows us to
locate the nonergodicity (ideal glass) transition line of
the system.We find that, on increasing the number density
of polymer, the characteristic time of the system goes
through a sequence of maxima and minima which we
show to be related to the oscillatory behavior of the
effective HS diameter [14]. We also find a strong correla-
tion between the equilibrium phase diagrams of the sys-
tem and the ideal glass line. The equilibrium reentrant
melting transition is shown to have its counterpart in the
reentrant melting of the disordered glass nested between
two stable fluid phases. Finally, we discover a striking
similarity in the shape of the isodiffusivity and MCT
ideal glass curves, regardless of the detailed approxima-
tion employed in the calculation of the structure factor
S�q� and the type of dynamics (MD or BD). These find-
ings strongly support the interpretation that the structural
arrest of star polymers is a glass transition of ‘‘effective
hard spheres’’ characterized by an �- and f-dependent HS
diameter, despite the fact that the liquid structure and the
2003 The American Physical Society 238301-1
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Standard MD and BD techniques have been employed
in order to study the dynamic behavior of the star-poly-
mer system [15]. MD and BD lead to identical predictions
for the long-time dynamics of the system within the
framework of the MCT [13,16]. Thus, though BD offers
a more realistic description of the short-time diffusion of
the particles, the long-time behavior which is the relevant
behavior for the glass transition is the same in both.
Hydrodynamic interactions are ignored and the analysis
is based on the effective center-center interaction poten-
tial
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where � � 1=kBT and r is the distance between the two
centers. This potential is a combination of a logarithmic
interaction at short distances, which gives the interaction
its ultrasoft character and stems from the scaling analysis
of Witten and Pincus [17], and a Yukawa form for the
decay at long distances matched at a distance r � 	. The
quantity �V�r� depends solely on 	 and f. The validity of
this potential has been demonstrated via extensive com-
parisons both with small angle neutron scattering data
[2,10] and with monomer-resolved simulations [18]. In
this entropic interaction, f�1 plays the role of T in normal
fluids.

In order to locate the line of structural arrest, the mean
squared displacement averaged over all particles hjri�t� �
ri�0�j2i, where ri is the position of particle i, has been
computed as a function of time t for several values of the
two control parameters, the functionality f and the pack-
ing fraction � � ��	3=6, where � is the number density.
The values of the self-diffusion coefficient D are calcu-
lated from the relation 6Dt � hjri�t� � ri�0�j2i, valid for
large t.

For the same system, the MCT equations [13] for
modelling the structural arrest in supercooled liquid
states have been solved; MCT furnishes a time evolution
equation for the normalized density fluctuation correlator
��q; t� as a function of the momentum transfer q and t,
which contains a term nonlinear in the correlator itself.
Knowing S�q� for the given interaction potential, the
memory kernel entering in the nonlinear term of the
MCT equation can be evaluated and the equation solved
for various values of q. In particular, the nonergodicity
transition leading to structural arrest is obtained by per-
forming the limiting value of the density correlator
limt!1��q; t� � f�q�. The nonergodicity factor f�q� is
the solution of the equation

f�q�
1� f�q�

� F q�f�; (2)

where the memory kernel is quadratic in the correlator
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The vertex functions V , the coupling constants of the
theory, are

V �q;k� �
�

q4
�q � �q� k�c�jq� kj�

� q � kc�k��2S�q�S�k�S�jq� kj� (4)

and depend only on the Fourier transform of the direct
correlation function c�q�, or equivalently on S�q�. In the
A2 bifurcation scenario of MCT [13] the solutions of
Eq. (2) jump from zero to a finite value at the ideal glass
transition. The locus of the fluid-glass transition can be
calculated varying the control parameters of the system,
f and �.
S�q� has been calculated for the potential of Eq. (1)

using two different approximate closures for the
Ornstein-Zernike equation. The first one is the self-
consistent Rogers-Young (RY) closure [19], which satis-
fies the thermodynamic requirement that the isothermal
compressibilities calculated either following the so-
called fluctuation route or the virial route be identical
to one another. The second approach is the modified
hypernetted-chain approximation (MHNC) [20]. In the
MHNC, one approximates the bridge function of the
system [21] with that of an effective HS fluid. The opti-
mum value of the diameter of this reference HS system is
chosen in such a way to satisfy the Lado criterion [22].
Both the RYand the MHNC closures have been shown to
yield results that compare extremely well with simula-
tions [14,23].

The diffusion coefficient D for MD and BD are re-
ported in Fig. 1, in the upper and middle panels, respec-
tively, for a large set of f and � values [24]. In simple
liquids, D decreases monotonically on increasing �. In
the present system, D has a highly nonmonotonic behav-
ior. At f � 32 a minimum around � � 0:5 is followed by
a flat maximum up to � � 1:5. At larger f values (f >
40) a clear sequence of minima and maxima is observed.
The MD and BD results show the same trend, and in
supercooled states the D values become proportional.
Such a proportionality supports the interpretation of the
present results in term of MCT for supercooled liquids.
Indeed, one of the basic predictions of the theory is the
independence of the slow dynamics from the microscopic
dynamics [13,16,25].

The � and f dependence of D can be rationalized by
calculating the isodiffusivity curves [26], i.e., the locus of
points in the (�; f) plane where D has a constant value.
Such curves, for two different values of D, are shown in
Fig. 2 together with the equilibrium fluid-crystal coex-
istence lines, as calculated in Ref. [3]. The isodiffusivity
curves run parallel to the coexistence lines, suggesting
that crystallization in this system is achieved at the same
D value, independently from the underlying crystalline
238301-2
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FIG. 1. The self-diffusion coefficient, DMD obtained by mo-
lecular dynamics (upper panel, MD units [15]), DBD by
Brownian dynamics (middle panel, BD units), and DHS for
an equivalent HS system (lower panel, arbitrary units), as a
function of packing fraction for various values of the function-
ality [24]. Missing points along the simulation curves were
identified as crystalline states.
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phase, and offering thereby a strong confirmation of the
dynamical freezing criterion of Löwen et al. [27]. Figure 2
also shows the MCT ideal glass transition line (which
can be considered as the isodiffusivity curve in the limit
D � 0) using as input the RY and the MHNC S�q�. Both
the RYand the MHNC ideal glass lines track the molecu-
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FIG. 2. Experimental isodiffusivity curves for two values of
the MD-diffusion coefficient (D � 0:067 and D � 0:017) and
the MCT fluid-glass lines (computed with RYand MHNC). The
equilibrium phase diagram (from Ref. [3]) is also reported for
comparison. The inset compares the RY-ideal MCT glass line
with the isodiffusivity data for D � 0:017, after a shift along
the f�1 axis.
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lar dynamics isodiffusivity curves. The simulation curve
can be perfectly superimposed to the theoretical curve
after a shift in f�1, as shown in the inset of Fig. 2. The
agreement between theory and simulation below � � 1 is
extremely good, independent of the f value. Even the
reentrant shape of the isodiffusivity curve for f > 500
is captured by the theory.

The shape of the ideal glass line in the (�; f) plane
suggests interesting possibilities for modulating the dy-
namics in star-polymer systems. If crystallization can be
avoided, a glass state can be generated by compression
which can then be melted with further compression (for
example for f � 36). Similarly, the dynamics of the
polymer can be slowed down and increased again upon
increase of its functionality (for example at � � 0:23).

In order to better grasp the peculiar shape of the
dynamical arrest curve, we test the hypothesis that the
slowing down of the dynamics is controlled by the � and
f dependence of an effective hard core. MHNC provides a
well-defined way for calculating the equivalent HS diam-
eter 	HS and thus �HS. In the case of the star-polymer
potential, employing the Lado criterion [22] for the
MHNC, the dependence of �HS on � has already been
studied and it has been shown that it reflects the features
of the interparticle interaction [14]. On the other hand,
values of the diffusion coefficient DHS for HS systems as
a function of �HS, the HS packing fraction, can be easily
obtained directly by MD simulation. In a similar way
DHS is known to follow for BD the simple law [28–30]
DHS � D0�1� 2�HS� for �HS � 0:4, with D0 a constant.
This offers the possibility of converting the known �
dependence of the effective HS packing fraction,
�HS���, into an effective DHS��� of the corresponding
HS system (both for BD and MD). This, in turn, can be
compared with the star-polymer D values reported here.
The comparison for MD is shown in the lower panel of
Fig. 1, which illustrates that the simple mapping between
the packing fractions of the star-polymer � and the HS
system �HS captures the main features of the diffusion
coefficient, e.g., the location of the minima and maxima
of the curves. The agreement between the two sets of data
suggests that the slow dynamics in star-polymer systems
can be traced back—via a density- and functionality-
dependent effective HS diameter—to the slow dynamics
of the HS system (which is accurately described by
MCT [31]).

Finally, Fig. 3 shows the nonergodicity factor f�q� at
three different representative points along the ideal glass
line, calculated with the MHNC S�q�. The f�q� shape
changes continuously along the ideal glass line, going
from the typical HS shape at small � (left-hand and
central panel) to a much more structured shape at large
� (right-hand panel). The f�q� width is a measure of the
inverse of the cage localization length, which decreases
on increasing �. The q dependence of f�q� is always in
phase with S�q�, a feature common to all previously
studied models. Two interesting features that develop at
238301-3
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FIG. 3. The MHNC structure factor S�q� (dashed line) and
the nonergodicity factor f�q� (solid line) for three representa-
tive points along the fluid-glass transition line.
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large � are the significant increase in f�q� in the q range
at q	 � 12:5 and the small value for vanishing q.

The MD and BD simulation data reported in this
Letter, for a large range of f and �, show that the
dynamics of star-polymer solutions is extremely rich.
The isodiffusivity curves have been shown to display
both minima and maxima as a function of � and minima
as a function of f which have been successfully con-
nected to the behavior to the �- and f-dependence of
the effective hard core diameter of an equivalent HS
system, despite the significant differences between the
star polymer and the HS S�q�. The detailed comparison
between theoretical predictions and simulation confirms
that MCT is a valid approach for guiding the interpreta-
tion of the disordered arrested states of soft matter ma-
terials [32,33], offering a theoretical understanding for
the observation of disordered arrested states not only in
colloidal systems characterized by a hard core [34–37] or
charge-stabilized colloidal dispersions [38], but also in
ultrasoft systems such as star-polymer solutions.
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