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Collapse and Revival of Glycolytic Oscillation
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Glycolysis is the major source of metabolic energy in almost all living cells. A key feature of the
glycolytic oscillations is their critical control by substrate injection rate. We show that in the limit of
weak noise of the fluctuating substrate injection rate a new instability arises in the dynamics leading to
collapse and revival of glycolytic oscillation reminiscent of ‘‘bursting’’ of action potential in nerve
cells. The dynamical system in this limit also exhibits an interesting mirror image symmetry between
growth and decay of fluctuations of the reaction product.
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FIG. 1. Goldbeter scheme of an autocatalytic enzyme reac-
tion in an allosteric model for glycolytic oscillation.
Biological oscillators are ubiquitous in natural scien-
ces. Among them, glycolysis serves as one of the most
important and prototype examples of limit cycle oscil-
lations [1–3]. This is the major source of metabolic energy
in almost all living organisms. In this process, the sugar
molecule is converted into the product via a series of
enzyme-catalyzed reactions. Over the years, the subject
has received considerable attention [1,4–12]. It has now
been established that glycolytic oscillations arise [4,5]
from complex regulatory properties of allosteric enzymes
[11,12], particularly phosphofructokinase (PFK) which
itself is activated by adenosine diphosphate, a reaction
product [9,10]. A key feature of the glycolytic oscillations
is their critical control by substrate injection rate. Both
regular and stochastic variations of this parameter have
been carried out experimentally [1,12,13] to analyze the
nature of nonlinear dynamics of glycolysis. The object of
the present paper is to explore a few generic features of
this dynamics in the weak noise limit of the fluctuating
substrate injection rate. To this end, we consider the large
and rare fluctuations of the dynamical variables [14] such
as product concentration of the order �

����

D
p

,
����

D
p

being
the strength of the injection rate.We show that in the limit
D ! 0 (i) a new instability arises resulting in collapse
and revival of glycolytic oscillations which is reminiscent
of bursting of action potential in nerve cells. (ii) Growth
of large fluctuations of the dynamical variables away
from the stable state in the presence of noise and its return
to the stable state along a relaxational path in the absence
of noise exhibit a mirror-image symmetry. In the weak
noise limit, stochastic processes can be described by
appropriate auxiliary Hamiltonian or path integral meth-
ods employed recently in several contexts [14,15].

To start with, we consider a simple product activated
enzyme reaction model [1,11,12] assuming that the allo-
steric enzymes consist of multiple identical subunits
which undergo conformational transition [11] between
more reactive �R� and less reactive �T� states. The sub-
strate S is injected at a rate � which binds with R and T
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concentration and exerts a positive feedback by activating
the transition from T to R states. The process is depicted
schematically in Fig. 1. The dynamics is described by
normalized product concentration � and substrate con-
centration � in continuously stirred yeast extracts in
terms of the equations [1]

d�=dt � �� ���;��; (1)

d�=dt � q���; �� � ks�; (2)

��;��

�
�e�1� �e�n�1�1� ��n � L��ce0�1� �ce0�n�1

L�1� �ce0�n � �1� �e�n�1� ��n
:

(3)

Here the normalized substrate and product concen-
trations are defined by � � 
S�=KR and � � 
P�=KP,
respectively. q � KR=KP denotes the ratio of the disso-
ciation constants of the reactant and product with the
enzyme in the R state. � is the maximum capacity of
the enzyme to transform the substrate into the product. ks
refers to the first order rate constant for removal of the
product. L is the allosteric constant of the enzyme and is
given by 
T�=
R� � 1 without ligand. c � kR=kT is the
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nonexclusive binding constant of the substrate. � is the
ratio of the catalytic activity of enzyme in T and R states.
e and e0 are two constants determined as e � 1=�1� ��
and e0 � 1=�1� �0�, where � � k=d and �0 � k0=d0. k0

and k are the respective rate constants for the steps
when the enzyme in T and R states converts a substrate
molecule to the product. d0 and d are the respective rate
constants for the steps where detachment of a substrate
molecule occurs from an enzyme in the T and the R state,
respectively.

Following Goldbeter [1], we consider the simplest case
when the enzyme is a dimer and the substrate binds
exclusively to the R state of the enzyme; i.e., � � 0 and
e0 � 1. This captures the essential features of positive
cooperativity. ��;�� then assumes a simple form with
n � 2. The limit cycle oscillations of the allosteric model
originate from the regulatory properties of PFK, and it
has been possible to vary experimentally the substrate
injection rate in constant, periodic, and random manner
within physiologically accepted values of the experimen-
tal parameters [1,12,13,16] relevant for yeast cells. We
therefore consider a small but rapid fluctuation of the
substrate injection rate ��t� and rewrite (1) and (2) as

d�=dt � ��t� � f��;��; (4)

d�=dt � g��;��; (5)

where the dynamical system is driven by the weak white
noise ��t� [ � �0 � ��t�] whose mean and variance can be
expressed as

h��t�i � �0 h��t���t� ��i � D����; (6)

such that
����

D
p

� 1 and D can be considered as the small-
ness parameter for the present problem of singular per-
turbation theory that follows. Here f��; �� and g��; ��
are given by f��;�� � �0 � � and g��; �� � q��
ks�. The experimental justification for ascribing the na-
ture of fluctuation of the substrate injection rate as above
lies in the fact that the injection rate can be varied
stochastically rapidly in the time scale over which gly-
colytic oscillation takes place [13]. The Fokker-Planck
equation for probability distribution function P��;�; t�
corresponding to Langevin description (4)–(6) can be
written down as

@P
@t

� �
@�fP�
@�

�
@�gP�
@�

�D
@2P

@�2 : (7)

In the weak noise limit LtD!0, P��; �; t� can be de-
scribed [14,15] by a WKB-type approximation of the
Fokker-Planck equation (7) of the form P��;�; t� �
P0��; �; t� exp
s��;�; t�=D�. Here P0 is a prefactor and
s��;�; t� is the classical action satisfying Hamilton-
Jacobi equation which can be solved by auxiliary
Hamilton’s equations of motion,

d�=dt � �0 � �� 2p; (8)

d�=dt � q�� ks�; (9)
238102-2
dx=dt � ��p� q��x� ksx; (10)

dp=dt � ��p� q��x; (11)

where ��; �� is given by Eq. (3) for n � 2, and � and
� are the derivatives of  with respect to � and �,
respectively. The auxiliary Hamiltonian is given by

Haux��; x; �; p� � �f��;��p� g��;��x� p2; (12)

where p � @s=@� and x � @s=@�.
The origin of auxiliary dynamical variables x and p is

the fluctuation of the substrate injection rate. The intro-
duction of these variables implies addition of a new
degree of freedom in the dynamics originally described
by � and �. Since x, p owe their existence in the limit
D ! 0, we must look for the influence of vanishing weak
noise in the injection rate in the limit x ! 0 and p ! 0, so
that the auxiliary Hamiltonian Haux tends to zero. In what
follows, we show that the vanishing Hamiltonian method
captures the essential features of some generic effects of
weak noise in the dynamics of glycolytic oscillations.

The steady state solutions �x0; p0; �0; �0� of the ex-
tended dynamical system (8)–(11) can be obtained as
x0 � 0, p0 � 0 while �0 and �0 remain the same as
they are in the unperturbed system, i.e., �0 � q�0=ks,
and �0 is determined by the solution of the equation �0 �
���0; �0�. Linearizing the kinetic equations (8)–(11)
around the fixed point, the condition for instability can
be determined by the following characteristic equation
eigenvalues (w) of the stability matrix:

w2 � w�AC� ks � qBC� � ACks � 0; (13)

w2 � w�qBC� ks � AC� � ACks � 0; (14)

where A, B, and C are given by

A � eL�1� �c�2�1� 2�e��1� ��2

� e�1� �e�2�1� ��4

� 2ec�L�1� �e��1� �c��1� ��2; (15)

B � 2�eL�1� �e��1� ���1� �c�2; (16)

C �
�


L�1� �c�2 � �1� �e�2�1� ��2�2
: (17)

The condition for instability corresponding to Eq. (13)
is the same [1] as that for the unperturbed system, i.e.,
AC� qBC� ks < 0, since by virtue of experimental con-
dition AC is always greater than zero. From Eq. (14), we
see that one of the roots of this equation is always positive
regardless of the sign of �qBC� AC� ks. These two
conditions therefore imply that the steady state of the
extended dynamical system is always linearly unstable.
The passage through the critical point of instability (i.e.,
Hopf bifurcation) corresponding to Eq. (13) results in
sustained limit cycle oscillations. To explore further, we
resort to numerical simulation of Eqs. (8)–(11).
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The basis of our simulation essentially rests on the
phase plane analysis of the unperturbed dynamics
(Fig. 2). The effect of substrate injection rate and the
nature of dynamics depend critically on the intersection
of the product nullcline (d�=dt � 0) with the substrate
nullcline (d�=dt � 0). When the steady state is located at
the intersection of the two nullclines, lying at the negative
slope of the product nullcline (for �0 � 0:4, for example)
the system admits of limit cycle oscillations surrounding
the steady state. Such a situation is depicted in Fig. 3(a) in
the �-� plane for the parameter set [1] n � 2, �0 �
0:4 s�1, � � 103 s�1, ks � 0:1 s�1, q � 1:0, L � 7:5�
106, c � 0:01, and e � 0:9091, for the unperturbed sys-
tem. The corresponding variation of product concentra-
tion � with time is shown in the inset of Fig. 3(a).

The noise degree of freedom described by auxiliary
variables x; p is now switched on. To this end, Eqs. (8)–
(11) are numerically integrated with vanishingly small
initial values of x and p as x � 1� 10�6 and p � 1�
10�6 for the same parameter set. The result is shown in
Fig. 3(b). With the passage of time, the limit cycle phase
curve moves towards an attractor, and stays there for some
time, only to return to the limit cycle curve, and so on.
The process continues asymptotically. In the inset of
Fig. 3(b), we plot the variation of � as a function of
time. It is apparent that after a lapse of considerable
periods the oscillations collapse so that the system re-
mains in the quiescent state for some time followed by a
revival of oscillations. This collapse and revival of glyco-
lytic oscillations is similar to bursting behavior in many
neuron cells [17], where one encounters relatively quies-
cent hyperpolarized periods alternating with periods in
which a series of burst of action potential occurs. The
bursting behavior has also been observed in oscillatory
chemical reactions in a continuously stirred tank reactor
[17,18]. A plausible origin of collapse and revival of gly-
colytic oscillations can be understood in terms of mixed
2 4 0
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γ

FIG. 2. Product (d�=dt � 0) and substrate (d�=dt � 0) null-
clines for glycolytic oscillation for the parameter values men-
tioned in the text. The substrate nullcline is drawn for
�0 � 0:4 s�1.
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mode oscillations of the system (�; �) and noise (x; p)
degrees of freedom and a slow manifold picture employed
earlier in several contexts [17–21]. This essentially im-
plies that, in the course of rapid passage between the left
and the right sheets of the S-shaped manifold (Fig. 2), the
system stays in the right sheet only to move out slowly
from it, centering around the steady state for some time
until it reaches the edge of the right sheet to jump again to
the left sheet. An important point regarding the phe-
nomenon is that it can be observed for the set of initial
conditions of �; � located in the S region of the phase
space enclosed by a limit cycle as shown in Fig. 3(c). The
initial conditions other than this (i.e., located in the U
region) lead to divergence of oscillations.

The nonlinear dynamics of glycolysis exhibits another
interesting feature in the weak noise limit of the substrate
injection rate. To demonstrate the basic idea, we set the
parameter values [1] governing the dynamics of the
system (8)–(11) as n � 2, �0 � 0:7, q � 1:0, ks �
0:1 s�1, L � 7:5� 106, � � 1000, c � 0:01, and e �
0:9091. The stable fixed point (say X0) of the unperturbed
system in this case corresponds to �0 � 10:474 and �0 �
6:999. With the introduction of noise degree of freedom,
FIG. 3. (a) Limit cycle curve (� vs � plot) for the parameter
set mentioned in the text in the absence of noise [inset: sus-
tained oscillation of the product (�) concentration as a function
of time t (in sec) in the absence of noise]. (b) Same as in (a) but
in the presence of noise [inset: same as in (a) but in the presence
of noise]. � and � are dimensionless quantities. (c) Region ‘‘S’’
within the limit cycle designates the zone of the initial con-
ditions that lead to collapse and revival phenomena of glyco-
lytic oscillation.
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FIG. 4. The mirror image symmetry between the path (dotted
line) signifying the fluctuation of dimensionless � as a function
of time t (in sec) from the steady state (in the presence of noise)
and relaxational path (continuous line) towards the steady state
(in the absence of noise).
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the trajectory moves away from X0 to reach a preassigned
state (say Xf) of large fluctuation (compared to strength
of noise x; p � 10�6) at t � 0 as shown in Fig. 4. The
fluctuational path from X0 to Xf can be identified as the
optimal path along which the system moves with an
overwhelming large probability [14]. If the system is
now allowed to follow a relaxational path from Xf in
the absence of noise variables to reach the steady state X0,
one observes a mirror image symmetry between the
growth of fluctuation from X0 to Xf and its decay from
Xf to X0. Although such a symmetry has been demon-
strated experimentally as a proof of the principle of de-
tailed balance in analogue electronic circuits [14], where
the dynamical system in question is closed thermody-
namically, it is somewhat counterintuitive in the present
context since the dynamical system describing glycolysis
is thermodynamically open because of the absence of any
relation between external noise and dissipation. We there-
fore believe that the observed symmetry in the present
case is different from the former [14] and originates from
an interplay of nonlinearity and dissipation in the system
such that the energy is injected in one region and is
extracted in another region of phase space. The existence
of a limit cycle signifies a common boundary between
them and a delicate balance (not to be confused with
detailed balance) between the rate of excitation or supply
of energy and the loss due to dissipation ensuring a strict
periodicity and recovery from weak noise imposed on the
system.

In summary, we have shown that nonlinear dynamics
of glycolysis in the weak noise limit of the substrate
injection rate admits of an interesting phenomenon of
collapse and revival of glycolytic oscillation similar to
bursting of action potential in nerve cells and a mirror
238102-4
image symmetry of growth and decay of large fluctua-
tions in the dynamical system. Since the features are
generic in the singular perturbative limit, we believe
that the present study can be extended to other models
in biology where limit cycles play an important role in
situations far from equilibrium.

Thanks are due to the CSIR, Government of India, for
support (S. K.), and for partial financial support [Grant
No. 01/(1740)/02/EMR II].
*Email address: pcdsr@mahendra.iacs.res.in
[1] A. Goldbeter, Biochemical Oscillations and Cellular

Rhythms. The Molecular Bases of Periodic and Chaotic
Behaviour (Cambridge University Press, Cambridge,
England, 1996).

[2] A.T. Winfree, The Geometry of Biological Time
(Springer, New York, 2001); J. D. Murray, Mathematical
Biology (Springer, Berlin, 1993).

[3] A. Goldbeter, Nature (London) 420, 238 (2002).
[4] B. Chance, B. Hess, and A. Betz, Biochem. Biophys. Res.

Commun. 16, 182 (1964).
[5] B. Hess and A. Boiteux, Annu. Rev. Biochem. 40, 237

(1971).
[6] M. J. Berridge and P. E. Rapp, J. Exp. Biol. 81, 217 (1979).
[7] R. Frenkel, Arch. Biochem. Biophys. 125, 151 (1968).
[8] K. Tornheim, V. Andre’s, and V. Schultz, J. Biol. Chem.

266, 15 675 (1991).
[9] J. Higgins, Proc. Natl. Acad. Sci. U.S.A. 51, 989 (1964).

[10] E. E. Sel’kov, Eur. J. Biochem. 4, 79 (1968).
[11] J. Monod, J. Wyman, and J. P. Changeux, J. Mol. Biol. 2,

88 (1965).
[12] A. Goldbeter and G. Nicolis, Prog. Theor. Biol. 4, 65

(1976).
[13] A. Boiteux, A. Goldbeter, and B. Hess, Proc. Natl. Acad.

Sci. U.S.A. 72, 3829 (1975).
[14] D. G. Luchinsky and P.V. E. McClintock, Nature

(London) 389, 403 (1997).
[15] R. Graham and T. Tel, Phys. Rev. Lett. 52, 9 (1984);

M. Battezzati, J. Chem. Phys. 111, 9932 (1999); M. I.
Dykman, E. Mori, J. Ross, and M. P. Hunt, J. Chem. Phys.
100, 5737 (1994); R. L. Kautz, Rep. Prog. Phys. 59, 935
(1996); A. J. Bray and A. J. Mckane, Phys. Rev. Lett. 62,
493 (1989); B. C. Bag and D. S. Ray, Phys. Rev. E 62,
4409 (2000); 61, 3223 (2000); Eur. Phys. J. B 17, 115
(2000).

[16] K. Tomita and H. Daido, Phys. Lett. 79A, 133 (1980).
[17] I. R. Epstein and J. A. Pojman, An Introduction to Non-

linear Chemical Dynamics Oscillations, Waves, Patterns
and Chaos (Oxford University Press, New York, 1998),
p. 276.

[18] M. Dolnik and I. R. Epstein, J. Chem. Phys. 98, 1149
(1993); K. R. Graziani, J. L. Hudson, and R. A. Schmitz,
Chem. Eng. J. 12, 9 (1976).

[19] R. E. Plant, J. Math. Biol. 11, 15 (1981).
[20] J. Rinzel and Y. S. Lee, J. Math. Biol. 25, 653 (1987).
[21] D. Barkley, J. Chem. Phys. 89, 5547 (1988).
238102-4


