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A Method for Tractable Dynamical Studies of Single and Double Shock Compression
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A new multiscale simulation method is formulated for the study of shocked materials. The method
combines molecular dynamics and the Euler equations for compressible flow. Treatment of the difficult
problem of the spontaneous formation of multiple shock waves due to material instabilities is enabled
with this approach. The method allows the molecular dynamics simulation of the system under
dynamical shock conditions for orders of magnitude longer time periods than is possible using the
popular nonequilibrium molecular dynamics approach. An example calculation is given for a model
potential for silicon in which a computational speedup of 10° is demonstrated. Results of these
simulations are consistent with the recent experimental observation of an anomalously large elastic

precursor on the nanosecond time scale.
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Study of the propagation of shock waves in condensed
matter has led to new discoveries ranging from new
metastable states of carbon [1] to the metallic conductiv-
ity of hydrogen in Jupiter [2,3], but progress in under-
standing the microscopic details of shocked materials has
been extremely difficult. Highly nonequilibrium regions
may exist that give rise to the formation of unexpected
metastable states of matter and determine the structure,
instabilities, and time evolution of the shock wave [4-7].
Some progress in understanding these microscopic details
can be made through molecular dynamics simulations
[8—11]. The popular nonequilibrium molecular dynamics
(NEMD) approach to atomistic simulations of shock
compression involves creating a shock on one edge of a
large system and allowing it to propagate until it reaches
the other side. The computational work required by
NEMD scales at least quadratically in the evolution
time because larger systems are needed for longer simu-
lations. When quantum mechanical methods with poor
scaling of computational effort with system size are em-
ployed, this approach to shock simulations rapidly be-
comes impossible. Another approach that utilizes a
computational cell moving at the shock speed has the
same drawbacks [12]. This Letter presents a method that
circumvents these difficulties by requiring simulation of
only a small part of the entire system. The effects of the
shock wave passing through this small piece of the sys-
tem are simulated by dynamically regulating the applied
stress which is obtained from a continuum theory descrip-
tion of the shock wave structure. Because the size of the
molecular dynamics system is independent of the simu-
lation time in this approach, the computational work
required to simulate a shocked system is nearly linear
in the simulation time, circumventing the scaling prob-
lems of NEMD.

Molecular dynamics simulations have been performed
that utilize a shock Hugoniot-based thermodynamic con-
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straint for the temperature at fixed volume [13]. This
approach is a thermodynamic one for a single shock
wave and fails to capture the spontaneous formation of
multiple shock waves and dynamical effects such as long-
lived metastable phases, elastic-plastic phase transitions,
and chemical reactions, which are ubiquitous in shocked
condensed matter. The new method outlined in this Letter
solves these problems. It enables the dynamical simula-
tion of shock waves in systems that have material insta-
bilities which lead to the formation of multiple shock
waves and chemical reactions that can change the speed
of shock propagation with time. It is a tractable method
that requires no a priori knowledge of the system phase
diagram, metastable states, or sound speeds.

Method for simulation of a single shock wave.—We
model the propagation of the shock wave using the 1D
Euler equations for compressible flow, which neglect ther-
mal transport. These equations represent the conservation
of mass, momentum, and energy, respectively, every-
where in the wave. Neglecting thermal transport in
high-temperature shocks is valid in systems where elec-
tronic mechanisms of heat conduction are not important,
i.e., usually less than a few thousand K in insulators [14].
While the Euler equations are not rigorously applicable at
elastic shock fronts which can be atomistically sharp, the
correct dynamics will be approximated in these special
regions. We seek solutions of these equations which are
steady in the frame of the shock wave moving at speed vy
by making the substitution (x, ) — x — v,z. This substi-
tution and integration over x yields a variation of the
Hugoniot relations,

u=vs<1 —@) )
p
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Here u is the local speed of the material in the laboratory
frame (particle velocity), v is the specific volume, p =
1/v is the density, e is the energy per unit mass, and p
is the negative component of the stress tensor in the
direction of shock propagation, —o,,. Variables with
subscript 0 are the values before the shock wave, and
we have chosen uy = 0, i.e., the material is initially at
rest in the laboratory frame. In the language of shock
physics, Eq. (2) for the pressure is the Rayleigh line and
Eq. (3) for the internal energy is the Hugoniot at constant
shock velocity. These equations apply to a system which
has a time-independent steady state in the reference frame
moving at the shock speed vy.

For the molecular dynamics simulation, we employ the
Lagrangian,

1v,?
——>(vy — v)?
2 v(z)
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where 7 and V are kinetic and potential energies per unit
mass, and Q is a masslike parameter for the simulation
cell size. It can be seen that Eq. (4) in Hamiltonian form
implies Eq. (3) when © = 0 because T + V = e. The
equation of motion for the system volume is

L= T - VAED + 5007 +
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which reduces to Eq. (2) when i = 0. We use the scaled
atomic coordinate scheme of Ref. [15] to deal with the
variable computational cell size. This scheme introduces a
volume dependence for 7 and V. Strain is allowed only in
the shock direction, ie., vy — v = —€,,vy where €,, is
the uniaxial strain. The pressures in Eq. (5), including the
thermal contribution, are taken to be the uniaxial x com-
ponent of stresses. Computational cell dimensions trans-
verse to the shock direction are fixed, as in NEMD
simulations. This approach allows the simulation of
shocks propagating in any direction which is difficult or
impossible with NEMD.

Simulation of a single shock wave may be accom-
plished by dynamically varying the uniaxial strain of
the system according to Eq. (5). By choosing a small
representative sample of the shocked material, it is as-
sumed that stress gradients and thermal gradients in the
actual shock wave are negligible on the length scale of the
sample size. While the thermal energy is assumed to be
evenly distributed throughout the sample, thermal equi-
librium is not required.

To simulate a shock to a given pressure, the initial state
parameters which define the molecular dynamics con-
straint in Eq. (4) are chosen (pg, pg, €p). A guess for v
is made for the constraint to take the system to the desired
final pressure. If the final pressure is other than the
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desired one, improved guesses for vy can be made and
simulated again until the desired v, is determined. The
final shock pressure increases with increasing v,. The
simulation of a shock to a given particle velocity using
this approach is a straightforward extension.

Stability of simulated waves.—There are two criteria
for the mechanical stability of a shock wave [16]. The first
one requires vy > ¢, where ¢ is the speed of sound in the
preshocked material. The second criterion requires u; +
¢, > v, where the subscript 1 denotes the postshock state.

The constraints of Egs. (2) and (3) take the system
through states which satisfy these stability criteria. The
line between points A and E in Fig. 1 depicts a Rayleigh
line for a single shock on a Hugoniot. Points A and E are
stationary points of Eq. (5). The Rayleigh line slope
magnitude must be greater than the Hugoniot slope at
point A to be an unstable stationary point of Eq. (5) and
vice versa at point E to be a stable point of Eq. (5). These
conditions are required for the compression to proceed up
along the Rayleigh line.

The Hugoniot and isentrope have a first-order tangent
at point A. Therefore, the stability condition cy < v, is
automatically satisfied at point A if compression proceeds
up along the Rayleigh line, since the Rayleigh line slope
is —(v2/v}) and the Hugoniot slope is —(c3/vd).
Furthermore, since the Rayleigh line slope magnitude is
less than the Hugoniot slope at point E, it can be shown
that u; + ¢; > v,, which is the other stability condition.
Therefore, the constraint Eq. (5) has stable points only
where the shock waves are stable.

Treatment of multiple shock waves.—The above
method describes the simulation of a single stable shock
wave. However, it is not always possible to shock to a
given pressure or particle velocity using this technique.
For example, Fig. 1 shows how it may not be possible to
connect a straight Rayleigh line to all final pressures
when there is a region of negative curvature in the
Hugoniot, d*>p/dv?* < 0. Such regions of negative curva-
ture are common in condensed phase materials and may
be a result of phase transformations or may be the shape
of a single phase Hugoniot. In Fig. 1, it is not possible to

double shock regime
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Volume
FIG. 1 (color). Rayleigh lines on a hypothetical Hugoniot.
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connect state A to any state between B and D with a
straight Rayleigh line. Therefore, it is not possible for a
single shock wave to compress the system to a pressure
between that of states B and D. While a single Rayleigh
line is insufficient to meet the pressure boundary condi-
tion in this region, two Rayleigh lines are sufficient.
The first goes from A to B and is tangent to the
Hugoniot at point B. This tangency implies ugp + cp =
Vsap at point B which is a point of instability. Therefore,
the wave from A to B terminates and a second wave forms
from B to C. The mechanical stability criteria are satis-
fied at points A and C.

Figure 2 shows a flowchart that illustrates how to
determine the set of Rayleigh lines that are stable and
meet the boundary conditions without any a priori
knowledge of the system. A shock wave instability exists
when the boundary condition falls within a discontinuity
in the set of final pressures as a function of shock speed,
as in the inset in Fig. 2. The existence of such a disconti-
nuity can be determined when sufficient trial values of v,
have been simulated. If the boundary condition falls
within the discontinuity, the entire process is repeated
with point B as the initial state to find the shock speed
that meets the boundary condition. If further instabilities
are discovered that prevent the boundary condition from
being met with a single shock, the process is continued.

Time dependence of the p-v space path.—The forma-
tion and evolution of multiple waves becomes more com-
plicated when chemical reactions or phase transitions
occur. Volume decreasing phase transformations cause
the pressure at point B in Figs. 1 and 2 to decrease with
time. Parametrization of the p-v space path with
Rayleigh lines is valid when the time scale of this pres-
sure change is less than the time required for a material
element to reach the final shocked state.

The rate at which the pressure at point B decreases can
be determined using the shock change equation [17,18]. If
we assume the internal energy is e = e(p, v, A), where A
is the reaction parameter for the phase transition, then the
rate of pressure change in the moving frame of the shock
wave at the metastable point B is given by

D/
By
/'discontinuity

Shock speed vg

Pressure or
particle velocity

Start over at B

FIG. 2. Flowchart for simulation of a shock to a chosen
pressure or particle velocity boundary condition. Instabilities
due to regions where d”p/dv* < 0 along the Hugoniot can give
rise to a discontinuity in the inset plot.
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Here A ranges between O and 1, & = p 3—K |p,H’ where H is
the enthalpy, and we have made use of the fact that v, —

u=c= \/(ap/ap)ls,/\ and g_; |Hug0ni0t = 3—Z |Rayleigh = ﬁ
at the point of instability where the Hugoniot and
Rayleigh lines share a common tangent. We take the
parameter aA to be l‘f—gl, where 6t is the time required
for a volume change dv at the start of chemistry or plastic
deformation, which is taken to be the point where the rate
of simulation compression is slowest.

The approximation of the p-v space path by more than
one Rayleigh line in the case of volume decreasing re-
actions is justified when the Rayleigh lines do not change
appreciably during the simulation,

dp Ap
ar | < AL @)
where Ap and At are the pressure change and time
duration of a given simulation, respectively. In a two-
shock wave, the time the system spends going from the
initial state to the final state At is a function of the shock
speeds associated with each wave and is linear in time
and the difference between wave speeds. In the long time
limit, ‘f]—’l’ IVS decreases exponentially with time [16].
Therefore, the Rayleigh line validity condition is satisfied
in the long simulation time limit. During times when this
condition is not satisfied, the p-v space path that a mate-
rial element follows is more complicated than straight
Rayleigh lines, but such situations are transient.
Application to silicon.—As an illustrative example, we
apply the new method to an elastic-plastic transition in a
model potential for silicon. Figure 3 shows shock speed as
a function of particle velocity for shock waves propagat-
ing in the [011] direction in silicon described by the
Stillinger-Weber potential [19]. This potential has been
found to provide a qualitative representation of condensed
properties of silicon. Data calculated using the NEMD
method are compared with results of the new method
presented in this Letter. NEMD simulations were done
with a computational cell of size 920 A X 12 A X 11 A
(240 X 3 X 2 unit cells, or 5760 atoms) for a duration of
about 10-20 ps. Simulations with the new method were
done with a computational cell size of 19 A X 12 A X
11 A (5 X 3 X 2 unit cells, or 120 atoms). Both simula-
tions were started at 300 K and zero stress. Since the
NEMD simulations were limited to the 10 ps time scale
by computational cost, simulations with the new method
were performed to calculate the Hugoniot on this 10 ps
time scale for comparison. The final particle velocity in
these simulations was taken to be a point of steady state
after a few picoseconds. The Rayleigh line validity con-
dition Eq. (7) is satisfied for the simulations performed in
the two-shock regime, giving a typical value for ‘fi—’t’ |vs of
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FIG. 3 (color). Comparison of calculated Hugoniots for the
NEMD approach and the method presented in this Letter for
roughly 10 ps runs. Note the ability to utilize much smaller
computational cell sizes with the new method. Also included is
one data point for a 5 ns simulation using this work which
would be prohibitive with NEMD requiring a factor of 103
increase in computational effort.

0.1 GPa/ps, while % is always greater than 0.5 GPa/ps
for all simulations in Fig. 3.

Figure 3 indicates that a single shock wave exists below
1.9 km/ sec particle velocity. Above this particle velocity,
an elastic shock wave precedes a slower moving shock
characterized by plastic deformation. Agreement between
the two methods is good for all regions except for the
plastic wave speed for particle velocities less than
2.1 km/sec. The wide range of values for the plastic
wave speeds in NEMD simulations in this regime is due
to finite simulation cell size effects. Better agreement in
this regime can be obtained by using simulation cells with
larger cross sectional area.

One of the primary advantages of using the method
outlined in this Letter is the ability to simulate for much
longer times than is possible with NEMD. As an ex-
ample, Fig. 3 shows the result of a 5 ns simulation per-
formed along a Rayleigh line corresponding to a shock
speed of 10.3 km/ sec. The uniaxially compressed elastic
state required 5 ns to undergo plastic deformation. The
difference in particle velocity between the 10 ps and 5 ns
simulations at this shock speed is 0.8 km/ sec, suggesting
that the elastically compressed state is metastable with an
anomalously large lifetime. This is consistent with ex-
perimental observations of shocked silicon that indicate
an anomalously high pressure elastic wave exists on the
nanosecond time scale [5]. In addition to the simulations
performed with the Stillinger-Weber potential, we have
performed more accurate tight-binding [20] 120 atom
simulations using the method of this Letter that also
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suggest an anomalously high pressure elastic wave pre-
cursor exists on the 10 ps time scale.

The 5 ns simulation done with NEMD would require
more than 5 ns simulation time due to the time required
for the equilibration of the first and second wave speeds
according to Eq. (6). For an O(N) method of force
evaluation, the computational cost of this simulation
with the NEMD method would be at least 10° times
greater and, therefore, not tractable.
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