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We elaborate the physics of systems of unconstrained, reconnecting vortex filaments with dynamic
finite cores of uniform (*“‘quantized”) circulation interacting via Biot-Savart and viscous forces. The
phenomenology of this purely structured turbulent system includes an inertial range with Kolmogorov’s
k=3/3 scaling for the energy spectrum, as well as Kolmogorov’s linear in r scaling for the third order

longitudinal structure function.
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The contribution of coherent structures to the statistics
of turbulent flow comprises a central problem in turbu-
lence physics. Adopting a vorticity representation of fluid
flow, one can define coherent structures to be vorticity
patterns (e.g., Burgers’s vortices) characterized by a num-
ber of parameters (e.g., the core radius to length ratio in
case of a filament). In order for such patterns to persist in
time their interactions should only cause their transition
from one characteristic parameter range to another with-
out simultaneous change of their mathematical definition.
Examples of such structures are described in [1]. In this
Letter we develop a novel turbulence model in order to
address the following question: is there a kind of low
dimensional coherent structure capable of representing
the dynamically important vorticity field as a collection
of its manifestations?

Our approach to the question above is inspired from
previous efforts to quantize classical turbulence [2] and is
motivated by drawing an analogy with quantum fluids [3].
In particular, starting from the Gross-Pitaevskii model of
superfluids and using the Madelung transformation the
superfluid dynamics reduce to the inviscid Euler equation,
with the additional constraint that the vorticity in the flow
must be exclusively in the form of vortex filaments with
quantized circulation [4]. This extra constraint is a pure
quantum mechanical effect. Although in classical fluids
such quantization constraints are absent, the following
questions are legitimate: How useful would it be (in
turbulence theory) to imagine a Navier-Stokes fluid
with its circulation quantized in the same manner as in
superfluids? Can one construct a Navier-Stokes analog of
the Euler superfluid vortices? In this Letter we respond to
the questions above by formulating a heuristic quantiza-
tion of the Navier-Stokes equation. We propose a turbu-
lence model that depicts unconstrained, reconnecting
vortex filaments with dynamic finite cores of uniform
(quantized) circulation, interacting via inertial and vis-
cous forces. This formulation is much more complicated
than previously suggested vortex models of inertial range
and fine scale turbulence [5—9]. These had to assume a
specific vortex structure of unknown stability analysis
and had to ignore the strong interactions between the
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vortices, as well as their reconnections. These simplifica-
tions are in oblique contrast to the complexity of turbu-
lence, and there is little hope to expect that statistical
mechanics obtained from such models could unlock
essential turbulence physics. Thus, this Letter ex-
tends the previous studies by avoiding many of their
simplifications.

If r; is the three dimensional representation of the
centerline curve of filament i then the vortex motion is
described by

dr;

E = V(ri(t): t)’ (1)

where V(r;(2), 1) is the Biot-Savart velocity:

1 — 5! Ndx'
Ve =g [ Tﬁiﬁ’iﬁx” @)

with w(x’) the vorticity vector. In the quantum Euler case
the vorticity w(x’) is a delta function along the curve of
the filament C; since the superfluid vortices have (at
hydrodynamic scales) infinitesimal core sizes. However,
in the classical Navier-Stokes case the vortices have
dynamic, finite cores, and the vorticity is distributed.
This results in a more complex vorticity representation
[10]:

w(x, 1) =Zr fc [ a,.(sl, 7 g('x’; (rs(:) z)l)
x (i X rb 0,

o(s, 1) 9s
where o;(s) is the local core radius of filament i and the
smoothing kernel { describes the way vorticity spreads
around the core centerline. The calculations are done with
the high order algebraic kernel of [11]. I' is the circulation
strength attributed to all filaments and is the model’s
analog of the quantum of circulation. The formula shows
that the vorticity field has two constituents. The first term
of the sum inside the integral sign models the vorticity
component along the direction of the filament tangent % .
This is the only component present in quantum vortices

(without the smoothing effect of ). The second term
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models the vorticity component along the direction x —
r;(s) and is induced by the change of o;(s) along the
filaments.

In the numerical calculations each filament is divided
into a number of finite segments using a set of discretiza-
tion points s/, where j = 1, N and s is the arclength
parametrization. The time integration is done with a
low storage, third order acccurate Runge-Kutta method
[12]. Both filament stretching due to the Biot-Savart
velocity field and viscous action change o;. The former
effect has been taken into account by imposing for every
discretization point s/ the conservation of vortex tube
volume:

%w%(sfnx(sf) — x(s7*)) = 0, @)

where s/*! is the immediate neighbor of point s/. The
viscous effect is handled by the core-spreading method
[13]:

do?

7 =2y, 5)
” 0 (

where v is the kinematic viscocity and vy is a factor
depending on the particular kernel { employed and equal
to y, = 2.205 for our choice of kernel. When two fila-
ments approach closer than a fraction of their correspond-
ing core radii, they reconnect. The details of the
algorithm can be found in [14] where it was shown to
predict adequately the changes in topology, the excitation
and propagation of Kelvin waves, the viscous decay of
kinetic energy, and the helicity dynamics. An important
consequence of circulation quantization is a great simpli-
fication in reconnection physics. Reconnections between
vortex rings of variable circulation are much more diffi-
cult to model efficiently. Periodicity was enforced with
the minimum image method [15]. In the absence of a
proper mathematical analysis of the error committed with

t=0
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FIG. 1.
is shown.
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the latter method we have done computational experi-
ments with a simple system which did not show signifi-
cant velocity deviations from exact reference velocity
profiles.

The initial condition of the calculations done with the
proposed model consists of 192 vortex rings in a periodic
box. The radii and orientations of the rings are chosen
using sequences of random numbers. The Reynolds num-
ber has the value Re = g = 5000 where I' is the circula-
tion of the rings and v is the kinematic viscosity. The
results are made dimensionless in the following manner:
t= %,x = ﬁl, w = @, where ¢/, x/, @' are dimensional
and R is a reference initial vortex-ring radius. We have
chosenI" = 1 and R = 1; the box size is [, = 2.041. Using
the initial value of the turbulence intensity u = /2E/3 =
3.87 (with wu; the velocity fluctuations and E =
%Z?:l@tiui) the turbulence kinetic energy) as a scale for
the velocity of convective motions and the size of the
largest resolvable eddies (equal to half the box size) as a
scale for the length of the convective motions, we find the
inertial time scale ¢, = 0.26. For comparison the numeri-
cal solution ends at 7, = 0.14.

Figure 1 shows that the artificially ordered initial con-
dition evolves (mainly because of reconnections) into
a complex tangle. The final reconnection number ex-
ceeds 9000.

Figure 2 presents the energy spectra at two different
times ¢t = 0.09 and ¢, = 0.14. They lead to the same
conclusions, although due to turbulence decay the earlier
spectrum is characterized by higher energy values.
Notice that the initial condition corresponds to a non-
physical tangle state and only at # = 0.05 (when an almost
linear decay sets in) is the tangle complex enough to be
realistic. At t, = 0.14 the minimum tube radius in the
system is located at k, = 14 and the maximum (tube
radius) at k; = 8.25. Here k = % without 27 factors. We
estimated the average dissipation (e) = 4 by equating it
to the almost constant turbulent energy decay rate (Fig. 3)
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Vortex filament core centerlines at initial and stoppage times. For clarity, only one-eighth of the computational box
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FIG. 2. Velocity spectra at t = 0.09 and 7, = 0.14.

in the time interval t = 0.07 to t = 0.14 and found {e) =
42. Direct calculation using the € definition is not appro-
priate since the major contribution to € comes from the
reconnection model and not from the resolved flow scales.
Assuming the formula (€) = 15/\—”2“2 (with A the Taylor
scale) of locally isotropic turbulence to be useful in the
present context, we find the Taylor wave number k, = 37
and the Taylor scale Reynolds number Re, = 427. The
Kolmogorov microscale is much smaller than the mini-
mum core size and is not resolved. The k < k; part of the
spectrum corresponds to the inertial range of turbulence
where vortex stretching is dominant. At k = k; viscous
effects become important and cause a sharp cutoff ob-
served between k = k; and k = kj,. There is also evidence

410000
22p 39000
L ol 3]
21F ~ 48000
20 S_ —i 7000
. g 36000 _,
W 45000
8¢ 14000
17} 43000
16F 32000
5 41000
1 5 é'l 1 1 L

FIG. 3. Evolution of turbulent energy E and of reconnection

number N.
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that at k = k, energy tends to pile up at subcore wave
numbers.

The fully resolved calculations of [16,17] depicted
vortex stretching at subcore length scales during recon-
nections. It was shown in [14] that the intensity of this
stretching process is only partially captured by the em-
ployed reconnection model, and therefore the small scale
flow structure is not predicted with great accuracy.
However, assuming that the physics of the inertial range
depend mainly on the effective removal of kinetic energy
at the smallest wave numbers and not on their detailed
structure, this should not present a problem since our
model incorporates such an effective dissipation. As
Fig. 2 indicates, the inertial range spectrum scales like
k=3/3 and this provides clear evidence that stretching
effects in turbulent vortex tangles can help explain
Kolmogorov scalings in accord with a line of thought
initiated in [18].

In Fig. 3 we observe a direct correlation between the
reconnection rate and the (turbulent) energy decay rate.
This is also consistent with the findings of [16], showing
intensification of dissipation during reconnections. The
results hint at a possible mechanism of dissipation inter-
mittency in real turbulence since reconnection processes
occupy at any instant only a portion of the fluid volume.

In Fig. 4 the third order longitudinal structure function
is shown. The latter is defined as

s = (fiute + 1)~ w2, ©)

and it is negative. We have first computed the S|3I values
along each of the three Cartesian directions and then we
averaged. The directional sets of data were not identical
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FIG. 4. Third order velocity structure function at stoppage
time ¢, = 0.14; the actual r interval is [0.4, 0.6].
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and the present turbulence is certainly not isotropic. The
results indicate that (as in real turbulent flows) S|3| is
nonvanishing. In addition, S|3| o« r in a subinterval of
the k%3 range. This scaling behavior was apparent in
all directions although its extent was varying. The
slope, however, in Fig. 4 differs significantly from the
Kolmogorov slope —%(e} valid for globally isotropic
turbulence and calculated using the (e) = 42 value.
Possible reasons for this could be turbulence unsteadiness
and anisotropy, a small extent of the inertial range which
is not asymptotically distant from the viscous regime, as
well as limitations of the present model of fully devel-
oped Navier-Stokes turbulence. In this context it is worth
noticing that in the grid generated turbulence experiment
of [19] with the Re, = 450 similar to ours, there was also
almost no range with the slope — 2(e) at all.

In conclusion, we have established a schoinoidal (from
the Greek oyotvoeir6ms meaning ropelike, stringy)
kind of turbulence. In doing this we have ignored the
incoherent background vorticity of real turbulence and
consequently the interaction between the latter and the
vortex filaments. In this milieu, it is important that the
system exhibits the Kolmogorov k~>/3 scaling, as well as
the Kolomogorov S|3I o r prediction, despite the turbu-
lence being highly intermittent and anisotropic. These
do not necessarily mean that stretched line vortices are
the sole factor of Kolmogorov phenomenology. The latter
preassumes (among other equally plausible alternatives)
that real turbulence is solely composed of linear coherent
structures (as is the case of quantum turbulence) or that
filamentary structures dominate an apparently incoherent
background. Arguments against the latter can be found in
[20]. The existence of different turbulence species all
with the same statistical phenomenology but different
deterministic structures should not be excluded. In
this milieu, the study of hybrid systems of filament,
sheet, and volume vorticity is important. In the related
area of quantum fluids the results help to understand the
k=1 [3] scaling of superfluid turbulence by noting that
vortex stretching, a necessary (in this case) factor of
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Kolmogorov scaling is missing in the coreless quantum
vortex tangles.
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