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In a photoionization spectrum in which there is no excitation of the discrete states, but only the
underlying continuum, we have observed resonances which appear as symmetric peaks, not the
commonly expected window resonances. Furthermore, since the excitation to the unperturbed con-
tinuum vanishes, the cross section expected from Fano’s configuration interaction theory is identically
zero. This shortcoming is removed by the explicit introduction of the phase shifted continuum, which
demonstrates that the shape of a resonance, by itself, provides no information about the relative
excitation amplitudes to the discrete state and the continuum.

DOI: 10.1103/PhysRevLett.90.233004 PACS numbers: 32.70.–n, 32.30.Jc
theory. In particular, we describe a photoionization ex-
periment in which the excitation amplitudes to a series of

is no photoionization between the peaks. At first glance it
seems obvious that we are exciting only the 5gnl0 states
Quantum interference occurs whenever there exist two
coherent paths from an initial state to a final state.
Particularly fascinating is the case in which one of the
two paths is via a resonance, for in this case the presence
of the resonance is manifested in a wide variety of line
shapes. In the case of optical absorption they are often
termed Fano line shapes [1]. One of the earliest examples
occurred in the absorption spectrum of Ar, Kr, and Xe
[2]. Above the first ionization limit the rare gas atoms can
be photoionized either directly or via the doubly excited
states, which are coupled to the ionization continuum.
The absorption cross section due to the doubly excited
states does not simply add to the continuum photoioniza-
tion cross section, as might be naively expected for a
Breit-Wigner resonance [3]. Rather, the amplitudes for
excitation of the doubly excited state and the continuum
must be added, often leading to asymmetric resonances.
Such asymmetric resonances are ubiquitous in the
photoionization of atoms and molecules [4], and their
existence prompted Fano to develop his seminal theory
of configuration interaction between a discrete state and a
continuum.

As it becomes possible to preserve quantum mechani-
cal coherence in more complex systems, it is likely that
Fano’s theory will find increasingly wide application. For
example, photoabsorption in quantum well systems ex-
hibits interference which is essentially identical to that
observed in atomic photoionization [5,6]. Somewhat dif-
ferent manifestations occur in the conductance through
magnetic impurity atoms [7] and single electron transis-
tors [8]. Extensions of Fano’s theory have been worked out
for these problems [9] and for its application to chaotic
systems [10].

Here we report an experiment which reveals a short-
coming of the straightforward application of Fano’s
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discrete states vanish, yet we see symmetric peaks at their
locations, not the commonly expected window resonan-
ces, or dips, in the photoionization cross section. More
problematic, the excitation amplitude to the unperturbed
continuum also vanishes, leading the theory to predict no
excitation at all. In fact, the theory is not completely
correct for long range Coulomb potentials and thus fails
to describe photoionization. In the sections which follow
we describe our experiment, review Fano’s theory, point
out the source of the problem, and suggest the correct
form for the photoionization cross section.

In the experiment Sr atoms in a beam are excited to the
doubly excited 5d17l state with l � 12 using four pulsed
lasers and a Stark switching technique, as shown in the
energy level diagram of Fig. 1 and described in detail
elsewhere [11]. Sr atoms in the 5d17l state are then
exposed to a fifth, 550 nm, laser pulse which excites
them to the energy range between the Sr� 5f and 5g
ionization limits. This excitation could imaginably pro-
duce either directly a Sr� 5f ion together with a free
electron or a 5gnl0 atom. This latter state autoionizes
quickly (in roughly 1 ns), thus producing a free electron
and so would again leave the ion predominantly in the
excited Sr� 5f state. The same 550 nm laser pulse then
ionizes the Sr� 5f ion to produce Sr�� [12]. The produc-
tion of Sr�� is proportional to the excitation by the first
550 nm photon. Approximately 100 ns after the laser
pulse we apply a 1 kV=cm electric field pulse which drives
the Sr�� ions to a dual microchannel plate detector. The
detector signal is recorded with a gated integrator as the
wavelength of the 550 nm laser is slowly scanned over
many shots of the lasers. The observed photoionization
spectrum is shown in Fig. 2. In it a clear series of
symmetric, apparently Lorentzian peaks, at the locations
of the 5gnl0 states (l0 � 11; 13), is quite evident, and there
 2003 The American Physical Society 233004-1



550 551 552 553 554

3

6

545 550 555

2

4

6

8

10

b)
24

19

S
r+

+
 s

ig
na

l (
a.

u.
)

wavelength of the 5th laser (nm)

a)
24 19

S
r+

+
-s

ig
na

l (
a.

u.
)

FIG. 2. Photoionization spectrum observed by scanning the
fifth laser (a) from slightly below the 5f limit, shown by the
arrow, to the vicinity of the 5g limit at about 544 nm.
The resonances corresponding to 5g19l0 and 5g24l0 states
have the numbers 19 and 24, respectively, above them.
(b) Expanded view of the 5g19l0–5g24l0 resonances.
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FIG. 1. Excitation scheme of the experiment. The excitation
of the Sr 5d17l state is done with four fixed frequency lasers
and Stark switching. The frequency of the final fifth laser is
swept through the energy from the Sr� 5f to 5g limits. As
shown, there is no excitation amplitude to the 5gnl0 states, only
to the 5f�l continuum.
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and not exciting the 5f�l continuum at all. However, after
more careful consideration it becomes apparent that quite
the opposite is true. The initial 5d17l state is well repre-
sented by an independent particle picture, i.e., a Sr� 5d
ion with a hydrogenic nl electron bound to it, and the
wave function is the product of these two wave functions.
There is evidently no electric dipole coupling from the
5d17l state to the 5gnl0 state. In contrast, the dipole
coupling from the 5d17l state to the 5f�l continuum is
allowed. In particular, the Sr� ion makes the 5d–5f
transition, and the nl spectator electron is shaken off to
the �l continuum, resulting in the 5f�l final state [13–15].
However, shakeoff to the unperturbed hydrogenic 5f�l
continuum,  E, is everywhere forbidden, and we observe
the excitation to the 5f�l continuum only where it is
phase shifted by its interaction with the 5gnl0 states.

Fano’s theory describes the excitation from an initial
state i to a final state f, which consists of a discrete state�
at energy E� and the degenerate continuum  E, which we
assume to be energy normalized. (We follow the notation
of Ref. [1].) It is most often the case that the coupling from
the discrete state to the continuum, VE, is energy inde-
pendent, and we here consider this case. This coupling
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broadens the discrete state so that it has a width
(FWHM), � � 2�jVEj

2, and the natural energy scale
for the problem is the reduced energy, � � 2�E� E��=
�. In addition to broadening the discrete state, �, the
coupling VE also produces a phase shift  in the radial
phase of the continuum wave function, and as we pass
from far below to far above the discrete state at E� there
is a phase shift of �. In particular,  is given by  �
cot�1���, so that far below, at, and far above the resonance
at E�,  � 0, �=2, and �, respectively. Well removed
from the resonance the continuum wave function is de-
scribed by its unperturbed solution  E � sin�kr��bg�,
where k is the continuum electron’s wave number and
�bg is a background phase. At the resonance, E�, it
is described by its phase shifted solution, �E, with
asymptotic form � cos�kr��bg�, and in general by
 E cos�� ��E sin�� with asymptotic form sin�kr�
�bg �� [1,16]. The resulting continuum wave function
has the same asymptotic amplitude across the
resonance. We note that these forms of the continuum
wave function, given in Ref. [1], are appropriate for short
range potentials.

The photoexcitation cross section is composed of the
excitation amplitudes to the discrete state �, the unper-
turbed continuum  E, and the phase shifted continuum
�E. In Fano’s theory the phase shifted continuum is
represented as a principal part integral over the unper-
turbed continuum, yielding the following expression:
233004-2
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FIG. 3. Relative cross sections for pure continuum excitation
assuming the same value of h Ej�jiimax, or equivalently, the
maximum cross section, in all cases. Four values of the initial
state continuum phase are shown: �i � 0, �=4, �=3, and �=2
corresponding to q � 0, �1, �1:732, and �1. For �< 0 the
profiles are reflected through � � 0.
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where � is the transition electric dipole moment, h�j�jii
and h Ej�jii are the excitation matrix elements to the
discrete state and the unperturbed continuum, and P
denotes a principal part integral.

If the excitation amplitude to the continuum h Ej�jii
is assumed to be energy independent, it appears that the
principal part integral can be neglected, and doing so
leads to the following common misinterpretation of the
theory. Namely, if there is no continuum excitation, there
is a symmetric, approximately Lorentzian peak of width
� centered at E�. On the other hand, if there is no
excitation of the discrete state, h�j�jii, there is a sym-
metric dip, or window resonance, in the photoionization
cross section with vanishing excitation at E�. If both
amplitudes are nonzero the resulting interference term
leads to the familiar asymmetric Fano line shape.

In addition to being a source of confusion, writing the
continuum �E as the principal part integral of Eq. (1) is
incorrect for long range potentials which support bound
states. It thus does not correctly represent photoioniza-
tion, as shown graphically by our experiment. However, it
does represent �E correctly for short range potentials, as
encountered in photodetachment [17]. There are two
straightforward ways to remedy this shortcoming of
Fano’s theory. The first is to extend the principal part
integral of Eq. (1) so that it includes not only the unper-
turbed continuum  E (here 5f�l), but the associated
bound states as well (here 5fnl)[18]. This extension ulti-
mately reflects the fact that the set of continuum states
(here 5f�l) is not by itself complete in terms of the radial
functions. The second is to adopt a more physical ap-
proach and rewrite Eq. (1) using the phase shifted con-
tinuum explicitly, i.e.,

� /

�������
h�j�jii sin

�V�
E

� h Ej�jii cos� h�Ej�jii sin

�������
2
:

(2)

In this form it is apparent that discarding the principal
part integral is equivalent to neglecting the excitation
amplitude to the phase shifted continuum, �E, which is
likely to be comparable to or greater than the excitation
amplitude to the unperturbed continuum  E.

The most physically appealing way of writing
Eq. (2) is to assume a sinusoidal dependence of the
continuum excitation amplitude on the phase  and
replace h Ej�jii cos� h�Ej�jii sin in Eq. (2) by
h Ej�jiimax cos���i�. Here h Ej�jiimax is the maxi-
mum transition amplitude from i to the continuum as a
function of the radial continuum phase, and �i is a
measure of the radial phase difference between the initial
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state and the unperturbed continuum  E. h Ej�jiimax,
assumed to be positive, decreases slowly with
energy. Far from the resonance, where  � 0 or �, the
excitation amplitude to the continuum takes the value
h Ej�jiimax cos�i, which is in general smaller in mag-
nitude than h Ej�jiimax. With this modification the cross
section is given by

� /

�������
h�j�jii sin

�V�
E

� h Ej�jiimax cos���i�

�������
2
: (3)

With no excitation of the discrete state, i.e., h�j�jii � 0,
and only continuum excitation, it is clear that any line
shape can be obtained using Eq. (3), and several are
shown in Fig. 3 for different positive values of �i �
�=2. For negative values the profiles are reflected through
� � 0. As shown by Fig. 3, �i � �=2 leads to symmetric
peaks, as seen in our spectrum of Fig. 2.

Why the spectrum of Fig. 2 is a case in which �i �
�=2 is easily understood. If we consider any one of the
peaks of Fig. 2, the discrete state � is the 5gnl0 state and
the unperturbed continuum  E is the 5f�l continuum. As
we have already stated, the dipole moment from the
initial state, i � 5d17l, to the discrete state, � � 5gnl0,
vanishes. The dipole matrix element for excitation from
the 5d17l state to the 5f�l continuum is given by

h5f�lj�j5d17li � h5fj�j5dih�lj17li; (4)

i.e., a product of the ionic dipole matrix element and an
overlap integral for the outer electron. In both the unper-
turbed 5d17l state and the unperturbed 5f�l continuum,
the outer (17l or �l) electron states are hydrogenic and
have quantum defects � � 0. Consequently, the overlap
integral h17lj�li vanishes due to the orthogonality of the
17l and �l radial wave functions. Evidently, with no
interaction between the discrete state and the continuum
there would be no continuum excitation. However, when
233004-3
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the configuration interaction is taken into account the
continuum excitation is allowed. Specifically, as we pass
the energies of the 5gnl0 states the interaction of the 5f�l
continuum with the 5gnl0 states causes the radial contin-
uum phase to go through a phase shift of�. The change in
the radial phase causes the overlap integral of Eq. (4) to
depart from zero. In particular, it oscillates sinusoidally
with , having the form

h�lj17li � h�lj17limax sin; (5)

where h�lj17limax decreases slowly with increasing en-
ergy. Clearly the overlap integral reaches its maximum at
 � �=2, the location of the 5gnl0 states. With this ob-
servation we can use Eqs. (4) and (5) to write the second
term of Eq. (3) for our spectrum of Fig. 2 as

h Ej�jiimax cos���i� � h5fj�j5dih�lj17dimax

� cos�� �=2�; (6)

i.e., the spectrum of Fig. 2 corresponds to the �i � �=2
case shown in Fig. 3. In spite of the fact that the peaks of
Fig. 2 appear to be from excitation of the discrete 5gnl0

states, they are due only to the phase shifted 5f�l con-
tinuum. Asymmetric line shapes attributed to pure con-
tinuum excitation have been observed previously, but it
was less clear in those cases that there was no excitation
to the discrete state [14,15].

It is conventional to express the shape of the resonance
as the ratio of the photoionization cross section to the
cross section of the unperturbed continuum, i.e., as�������

hfj�jii
h Ej�jii

�������
2
�

�q� ��2

1� �2
; (7)

where we have introduced the Fano shape parameter q,
defined as [1,16]

q �
h�j�jii=�V�

E � h Ej�jiimax sin�i

h Ej�jiimax cos�i
: (8)

It is evidently minus the ratio of the coefficients of the
sin and cos terms of Eqs. (1) or (2). If we use the
original Fano form of Eq. (1) and ignore the principal part
integral, the second term in the numerator of Eq. (8) is
missing while the q of the resonance seems to provide
immediately the ratio of the amplitudes for discrete and
continuum excitation (and is often used as such [19]).
However, as shown by Eq. (8), this simple correspondence
does not exist. To show the difference more clearly we
rewrite Eq. (8) as

q �
h�j�jii

�V�
Eh Ej�jiimax cos�i

� tan�i; (9)

showing that q depends on both the ratio of the ampli-
tudes to the discrete state and the unperturbed continuum
and the phase �i between the initial state and the unper-
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turbed continuum. In the absence of excitation to the
discrete state q � � tan�i and can take any value.

In conclusion, we have observed symmetric peaks in a
photoionization spectrum which appear to be due to
excitation of only the discrete state. However, they are
due to pure continuum excitation, in particular, to the
phase shifted continuum �E, since excitation to the un-
perturbed continuum  E vanishes. More generally, pure
continuum excitation can lead to the entire range of Fano
profiles so that an asymmetric line shape does not neces-
sarily imply interference between the bound and contin-
uum excitation amplitudes. Consequently, the q of an
observed resonance does not, by itself, tell us the ratio
of the excitation amplitudes to the discrete state and the
unperturbed continuum. While we have here described
the photoexcitation at a single resonance using an adap-
tation of Fano’s configuration interaction theory which is
applicable to long range potentials, we can also readily
develop a quantum defect theory description extending
from below the 5f limit to above the 5g limit [20–22].
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