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Conformal Fixed Point, Cosmological Constant, and Quintessence

Christof Wetterich
Institut für Theoretische Physik, Philosophenweg 16, 69120 Heidelberg, Germany

(Received 22 October 2002; published 13 June 2003)
231302-1
We connect a possible solution for the ‘‘cosmological constant problem’’ to the existence of a
(postulated) conformal fixed point in a fundamental theory. The resulting cosmology leads to
quintessence, where the present acceleration of the expansion of the universe is linked to a crossover
in the flow of coupling constants.
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Dilatation or scale transformations correspond to a
multiplicative rescaling 
! c
, with constant c and ap-

should approach the potential minimum at 
 � 0. The
increase of 
 has a striking consequence for the fate of
Once upon a time gravity was a strong force, with
Newton’s constant G�i�

eff � 10110 m3 kg�1 s�2 or effective
Planck mass �MM�i� � 2� 10�33 eV, and typical particle
masses � �MM�i�. The mysterious homogeneous dark energy
in the universe (‘‘cosmological constant’’) started out
with a similar characteristic magnitude V�i� � � �MM�i��4.
Over the ages of the history of the universe the Planck
mass increased and reaches today the value �MM�0� �
2:44� 1018 GeV. In the later stages of cosmology the
mass ratios MW= �MM and mp= �MM for the Fermi scale and
the proton mass have been approximately time indepen-
dent. The growth rate of the dark energy was slower,
however, such that today V�0� � �2:2� 10�3 eV�4, ex-
plaining one of the smallest numbers observed in nature,
V�0�= �MM4 � 6:5� 10�121. In the present epoch the pace of
change of the fundamental mass scales slows down con-
siderably, resulting in an accelerated expansion of the
universe. This tale of the cosmological history may
seem somewhat weird at first sight — we will argue here
that it could naturally be associated with the properties of
a (postulated) conformal fixed point of a (still unknown)
theory unifying all interactions.

Our basic assumption states that in a fundamental
theory (FT) of all interactions all mass scales of particle
physics are determined by a field 
 rather than by a fun-
damental constant. This is common in grand unified,
higher dimensional or superstring theories. Typically, 

is associated with a scale of transition such that for
momenta p2 � 
2 all the modes of the FT are impor-
tant — for example, the FT may be formulated in more
than four spacetime dimensions — whereas for p2 � 
2

an effective description in terms of a four-dimensional
quantum field theory becomes valid. From the FT point of
view the field 
 plays the role of an effective infrared
scale. Seen from the four-dimensional standard model,
the scale 
 stands for the onset of new physics in the
ultraviolet. Within the four-dimensional description that
we adopt here, 
 is a scalar field and may therefore evolve
over cosmological time scales. In particular, the effective
Planck mass is proportional to 
. If 
 changes with time,
one is led to cosmologies with a variable Planck mass [1].
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propriate scaling of the metric and other fields. A nonvan-
ishing cosmological value 
�t� ‘‘spontaneously breaks’’
dilatation and conformal symmetries and induces masses
for most particles. If dilatation symmetry were an exact
symmetry of the effective action, the value of 
 would not
be an observable quantity. However, in quantum theories
it is common that dilatation symmetry is violated [2,3] by
the effects of fluctuations, resulting in ‘‘running’’ dimen-
sionless couplings depending on 
. We assume that by
dimensional transmutation this introduces an intrinsic
scale m in the effective potential for the cosmon field 
,
in analogy to the characteristic scale of strong interac-
tions, �QCD.

As an example, we realize these ideas in an effective
model for gravity and the cosmon field 
, characterized
by an effective action S after ‘‘integrating out’’ the other
fields and all quantum fluctuations,
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Here we consider the case where for m! 0 the effective
potential has a flat direction, and assume that for large 

the leading manifestation of the dilatation anomaly for V
results in a mass term

V � m2
2: (2)

In the region of large 
� m all interactions are de-
rivative interactions. The dimensionless coupling � > 0
governs the cosmon kinetic term. The additive constant
is chosen such that the model exhibits an exact local
conformal symmetry g�� ! c�2�x�g��; 
! c�x�
 for
� � 0; m � 0. In our normalization 
 corresponds to
the effective reduced Planck mass, �MM � �8�Geff�

�1=2.
It is straightforward to solve the field equations for this

model [1,4] for a homogeneous and isotropic metric and
cosmon field. One finds that the cosmon field increases for
large time. This is due to its coupling to gravity and
contradicts the too naive expectation that the cosmon
 2003 The American Physical Society 231302-1
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the homogeneous dark energy. Indeed, only mass ratios
are physically observable [1]. For the effective cosmo-
logical constant V= �MM4 we find that V1=4 increases less
rapidly than �MM � 
. Therefore the dark energy vanishes
asymptotically if 
 increases with time, i.e., V= �MM4 �
m2=
2 ! 0. This is the basic ingredient for our explana-
tion [3] why the cosmological constant vanishes asymp-
totically and why dark energy has attained an extremely
small value today as a consequence of the enormous age
of our universe. We will argue below that the ‘‘cosmo-
logical exploration of the ultraviolet’’ with increasing 

has important consequences for the issue of quantum
corrections to the cosmological constant.

Before we can proceed to a quantitative discussion of
cosmology we need to specify ��
=m�. For large 
� m
simple dimensional arguments tell us that the 
 depen-
dence can be written in terms of a ‘‘renormalization
group equation’’ @�=@ ln
 � �����. A computation of
�� would need the knowledge of the FT since the domi-
nant contributions arise from modes with p2 � 
2. We
know only that �� should have a zero for � � 0, since
� � 0 corresponds to an enhanced (conformal) symme-
try and separates a stable model for � � 0 from an un-
acceptable unstable model for � < 0. By continuity, for
small enough � the � function is also small and � in-
creases only slowly with 
 (assuming �� � 0). For 

varying over many orders of magnitude during the cos-
mological evolution we may nevertheless be confronted
with a situation where � has grown large at some critical
value 
c. At this scale we expect a crossover from the
vicinity of the conformal fixed point at � � 0 to an
unknown behavior for large �. The crossover scale 
c
can play an important role in cosmology. In particular, we
will discuss a scenario where 
 reaches 
c in the present
epoch, triggering an accelerated expansion of the uni-
verse [5].

As a simple example we take

@�
@ ln


� �� � E�2; � �
1

E ln�
c=
�
; (3)

where 
c depends on E and the ‘‘initial value’’ �i �
��
 � m�. For small E�i the separation between the
crossover scale 
c and the intrinsic scale m becomes
exponentially large


c
m

� exp

�
1

E�i

�
; (4)

in close analogy to the inverse ratio between the strong
interaction scale �QCD and the unification scale. In par-
ticular, if 
c is associated with the present value �MM�0� �
�MMp � 2:44� 1018 GeV and E�i � 1=138 we obtain a

present value for the potential part of the dark energy

V�0� � m2
2
c � exp

�
�

2

E�i

�
�MM4
p

� 6:56� 10�121 �MM4
p � �20:2� 10�3 eV�4: (5)
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We emphasize that the cosmological evolution for this
class of models is independent of the initial conditions
since the late time behavior is governed by a cosmic
attractor solution [3,6,7]. Generically, the ratio �h be-
tween the homogeneous dark energy density and the
critical energy density stays small as long as � is small,
adjusting itself to a dominant radiation or matter compo-
nent, �h � � or �h �

3
4�, respectively. This behavior

only changes once 
 reaches the crossover scale 
c, and
for E�i � 1=138 this happens precisely at the present
epoch. Then the universe switches to a regime where
dark energy dominates.

To be more quantitative we select E � 5, �i � 1:444�
10�3 [and divide �� by (1� 0:05�)]. We can now com-
pute the characteristic quantities like the amount of dark
energy today, ��0�

h � 0:7, or the equation of state wh �
ph=�h at the present time, w�0�

h � �0:93. They are com-
patible with the supernovae observations [5] and the age
of the universe t�0� � 13:7� 109 yr. For a discussion [8]
of the spectrum of the cosmic microwave background
anisotropies we need, in addition, the value of ��ls�

h �
0:019 at the time of last scattering and an averaged
equation of state �ww which determine the position of the
third peak in angular momentum space as l3 � 795 (for
h � 0:66�. Structure formation is slowed down by the
early presence of dark energy [9]. It depends on an aver-
age of �h over the time of structure formation, ��sf�

h �
0:037 [10]. In our case the cold dark matter density
fluctuations are reduced by a factor "8="8��� � 0:7 as
compared to a model with a cosmological constant and
the same amount of dark energy today. We conclude that
our simple model is compatible with the present observa-
tions. We observe interesting differences as compared to
models with a cosmological constant. They are subject to
future observational tests.

Several comments are in order: (i) Cosmology is most
easily discussed after a Weyl scaling g�� ! � �MMp=
�2g��
and a redefinition of the cosmon field ’= �MMp �
ln

4=V�
�� � 2 ln�
=m�, such that the coefficient in
front of the curvature scalar R becomes constant and ’
is directly related to the value of the potential

S �
Z
d4x

���
g

p
�
�

1

2
�MM2
pR�

1

2
k2�’�@�’@�’

� �MM4
p exp

�
�

’
�MMp

��
: (6)

The details of the model are now encoded in the non-
trivial kinetic term [11] k2�’���=4. As a general fea-
ture, the motion of the cosmon slows down once k2

becomes large, in our case for ’ near ’c � 2 �MMp=��iE�.
Then the dominance of the potential V over the ki-
netic energy T leads to a negative equation of state wh�
�T�V�=�T�V� and to an acceleration of the uni-
verse [12].

(ii) The qualitative features of our proposal hold for a
much more general class of cosmon potentials V. For ex-
ample, adding to Eq. (2) a ‘‘bare cosmological constant’’
231302-2
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&m4 becomes completely irrelevant for large 
=m. Only
the behavior of V for large 
 matters. The scenario of an
asymptotically vanishing dark energy holds provided that
V increases less rapidly than 
4 and � remains finite for

< �MMp. This applies, in particular, to an asymptotic
behavior V � '�
=m�
4 with a dimensionless coupling
' obeying the renormalization group equation

@'
@ ln


� �A'; A > 0: (7)

(iii) Details of cosmology depend on ��. For �� � 0
one recovers ‘‘exponential quintessence’’ [3], whereas for
�� � D�;D constant, one finds ‘‘inverse power law quin-
tessence’’ [6] with power * � 2A=D. We have studied
other models with crossover behavior, e.g., �� � D��
E�2. For D > 0 the required value of �i decreases and
early quintessence (e.g., ��ls�

h ;��sf�
h � becomes less impor-

tant. The precise flow for very large �, i.e., � remaining
finite for all 
, plays only a minor role for presently
observable cosmology provided � grows sufficiently large
in the present epoch.

(iv) We can extend our description to matter fields and
radiation. As an example we consider the Higgs doublet
H, a fermion field  , and the gluons characterized by
their field strength F��. Within our assumption this adds
to Eq. (1) a term

SM �
Z
d4x

���
g

p
�
�'H=2��HyH � �2
2�2

� �h �  LH R � H:c:� �
ZF
4
F��F��

�
:

(8)

Our previous description has neglected the possible 

dependence of the dimensionless couplings 'H; �; h; ZF
such that after the Weyl scaling ’ decouples completely
from matter and radiation. In this case the Higgs doublet
reaches its 
-dependent minimum jHj2 � �2
2 early in
cosmology (after the electroweak phase transition).
Similarly, for a fixed value of the running gauge coupling
at some grand unified scale MX;*S�MX� � 1=40, we find
�QCD � 
 if MX � 
. In this approximation all ratios of
particle masses become independent of 
 and do not vary
with cosmological time.

We note the appearance of two different types of char-
acteristic masses for the excitations. The excitation along
the ‘‘vacuum direction’’ corresponds to a simultaneous
change of all mass scales (along the direction jHj � �
).
Its mass is given by the small intrinsic mass m. On the
other hand, the excitations perpendicular to the vacuum
direction correspond to a variation of mass ratios and
have a characteristic mass �
. In our example, the in-
trinsic mass m is many orders of magnitude smaller than
the (present) mass of the Higgs boson M2

H � 'H�2
2.
This resembles the spontaneous breaking of some un-
known global symmetry where a small mass m for the
pseudo-Goldstone boson 
 is induced by an anomaly.
231302-3
(v) We do not expect the dimensionless couplings
'H;�; h; ZF to be precisely independent of 
=m. Then
the cosmological variation of 
=m will induce a time
dependence of the fundamental parameters. Severe
bounds [13] restrict [1,14] this dependence for the dimen-
sionless couplings of the known fields. More freedom is
left for a coupling of the cosmon ’ to dark matter —
sizable couplings would influence the cosmology [4,15].
Very close to the big bang, for 
 � m, the dependence of
all couplings on 
=m may have been strong.

(vi) In a grand unified theory the renormalized strong
gauge coupling or the fine structure constant *em depends
on the value of the gauge coupling gX � g�MX� at the
unification scale MX where g2X�
� � Z�1

F �
�. We neglect
here for simplicity the 
 dependence of MX;BX �
�@ ln�MX=
�=@ ln
 � 0, and concentrate on the case
where for 
! 1 the running of gX is governed by a
fixed point g2�=4� � 1=40

@g2
X

@ ln

� �g2 � b2g2X � b4g4X; b2 � b4g2� > 0: (9)

It is interesting to associate m with the nonperturbative
scale where gX�
! m� ! 1,

g2X � g2�

�
1�

�


m

�
�b2

�
�1
: (10)

The present relative variations of the gauge couplings are
then determined by

4F � �
�g2

g2X
� b2

�


m

�
�b2

� exp

�
�
b2’

2 �MMp

�
: (11)

For sufficiently large b2, say b2 > 0:2, the time variation
of �QCD or *em is much too small to be accessible for
present observations [14]. More generally, we conclude
that a fixed point which is approached sufficiently fast for

! 1 could give a very simple explanation why the
cosmological time variation of fundamental couplings is
small. On the other hand, the substantial variation of � at
the present cosmological epoch may have a small influ-
ence on the precise location of the fixed point g����. A
small increase of g���� can lead to a time variation of *em
in the range inferred from the observation of quasar ab-
sorption lines [16], corresponding to 4F � �4� 10�7.
Recent investigations indeed show [17] that a small � de-
pendence of�g2 makes the quasistellar object observation
compatible with all present bounds from archeo-nuclear
physics and tests of the equivalence principle, provided
that the crossover is sufficiently rapid (e.g., E � 8).

(vii) The effect of the quantum fluctuations is encoded
in the � functions (7) and (9). In our setting this concerns
mainly small deviations from a conformal fixed point at
� � 0; ' � 0; g2 � g2�. The conformal fixed point has g2

(and ') as relevant coupling for 
! 0, whereas for

! 1 the relevant coupling corresponds to �. The flow
of the couplings is therefore neither stable towards the
infrared nor towards the ultraviolet. The scale m marks
231302-3
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the first infrared scale where couplings grow large (e.g.,
the gauge coupling), whereas 
c corresponds to the
instability in the ultraviolet. A huge ratio 
c=m occurs
whenever the trajectory of the flow passes sufficiently
close to the fixed point.

A crucial question concerns the running of ' for large

 which can depend on the various dimensionless cou-
plings @'=@ ln
 � �'�'; �; g

2; h; 'H; . . .�. Near a fixed
point with only one relevant (marginal) coupling � all
couplings follow critical trajectories which may be pa-
rametrized by ��'�; g2�'�; h�'�, etc. Inserting these func-
tions into �' yields an expansion for small ';�' �
c' � A'� . . . . Only for c' � 0 the fixed point occurs
for '� � 0, and only in this case the effective cosmologi-
cal constant vanishes asymptotically. Our assumption of a
flat direction in the effective cosmon potential is equiva-
lent to c' � 0. We emphasize that the existence of a fixed
point at ' � 0 seems plausible since it separates a stable
�' > 0� from an unstable (' < 0, unbounded potential)
situation. Usually, the flow of couplings does not cross a
stability border. Nevertheless, we should consider pos-
sible arguments against c' � 0.

From a simple inspection of loop diagrams the indi-
vidual contribution of a particle with mass Mj � &j
 is
c' � &4

j . Even though &j is a tiny coupling for standard
model particles the resulting cosmological constant
would come out much too large ��M4

j �, reflecting the
‘‘naturalness’’ or ‘‘fine tuning’’ problem. It is obvious,
however, that c' will be dominated by the unknown
particles with mass around 
. From the point of view
of the low energy theory the value of c' is an ultraviolet
problem. We see no way to make statements about the
location of '� from our knowledge of the low energy
theory. (The situation is very different if the location of
a fixed point is dominated by the infrared modes.
Actually, an attempt to characterize the location of an
ultraviolet fixed point by the couplings of the infrared
modes would be similarly misleading as the character-
ization of an infrared fixed point by properties of the
ultraviolet modes.) This argument is strengthened if &j
depends on 
 as in our setting. In this case even the
contribution of the low mass particles to c' is not
uniquely dominated by momenta q2 �M2

j — it also in-
volves ‘‘ultraviolet momenta’’ q2 � 
2. We think that in
view of this situation our conjecture that V�
� rises for
large 
 less rapidly than 
4 ('� � 0; A > 0) seems to be a
reasonable possibility. (Our setting circumvents an argu-
ment [18] that time varying fundamental constants re-
quire the tuning of a whole function. Only c' � 0; A > 0
is required.) In this respect it is crucial that the late time
behavior explores the ultraviolet rather than the infrared.

We conclude that in a fundamental theory the presence
of a conformal fixed point with a flat direction, together
with the flow of small deviations from the fixed point
proposed in this note �A > 0�, would lead to a natural
explanation why the cosmological constant vanishes for
asymptotic time. After Weyl scaling, no additive constant
231302-4
hinders the asymptotic approach of the cosmon potential
to zero, V�’! 1� ! 0. This would solve the cosmologi-
cal constant problem [19]. In our crossover scenario the
past evolution of the universe is characterized by a small
and slowly varying fraction of dark energy which adapts
to a dominant radiation (matter) component �h � ��34��.
The future of the universe depends crucially on the un-
known properties of the flow of ��
� in the region of the
large �. The present epoch witnesses a crossover from
small to large �, resulting in an accelerated expansion. In
a FT the crossover scale 
c=m should be computable, just
as the values of mass ratios or dimensionless couplings in
particle physics. It is therefore not excluded that some of
the ‘‘cosmic coincidences’’ (relations between the present
value of the Hubble parameterH0 and particle properties)
could find an explanation in this direction. For the poten-
tial (2) the present value of H is given by the mass m
characterizing the dilatation anomaly

H2
0 �

2��0�
h

3�1� w�0�
h �

m2: (12)

The time variation of the dark energy could be detected
by cosmological observations in the near feature, and an
establishment of a time variation of fundamental cou-
plings would be a striking argument in favor of our
proposal.
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